Skip to main content
Log in

Gene Therapies for Transfusion-Dependent β-Thalassemia

  • Review Article
  • Published:
Indian Pediatrics Aims and scope Submit manuscript

Abstract

β-Thalassemia is one of the most prevalent monogenic diseases usually caused by quantitative defects in the production of β-globin, a component of adult hemoglobin (α2β2), leading to severe anemia. Technological advances in genome sequencing, stem cell selection, viral vector development, transduction and gene-editing strategies now allow for efficient ex-vivo genetic manipulation of human hematopoietic stem cells that can lead to a meaningful clinical benefit in thalassemia patients. In this perspective, the status of the gene-therapy approaches available for transfusion-dependent thalassemia and early results of clinical trials are discussed. It is highly anticipated that gene therapies will soon become a treatment option for patients lacking compatible donors for hematopoietic stem cell transplant and will offer a suitable alternative for definitive treatment of β-thalassemia, even in young children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giardine B, Borg J, Viennas E, et al. Updates of the HbVar database of human hemoglobin variants and thalassemia mutations. Nucleic Acids Res. 2014;42:D1063–9.

    Article  CAS  PubMed  Google Scholar 

  2. Rund D, Rachmilewitz E. Beta-thalassemia. N Engl J Med. 2005;353:1135–46.

    Article  CAS  PubMed  Google Scholar 

  3. Rachmilewitz EA, Giardina PJ. How I treat thalassemia. Blood. 2011;118: 3479–88.

    Article  CAS  PubMed  Google Scholar 

  4. Thein SL. Genetic modifiers of beta-thalassemia. Haematologica. 2005;90:649–60.

    CAS  PubMed  Google Scholar 

  5. Danjou F, Anni F, Galanello R. Beta-thalassemia: From genotype to phenotype. Haematologica. 2011;96:1573–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bernards R, Flavell RA. Physical mapping of the globin gene deletion in hereditary persistence of foetal haemoglobin (HPFH). Nucleic Acids Res 1980;8:1521–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Forget BG. Molecular basis of hereditary persistence of fetal hemoglobin. Ann NY Acad Sci. 1998;850:38–44.

    Article  CAS  PubMed  Google Scholar 

  8. Musallam KM, Rivella S, Vichinsky Rachmilewitz EA. Non-transfusion-dependent thalassemias. Haematologica. 2013; 98: 833–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cao A, Galanello R. Beta-thalassemia. Genet Med. 2010; 12: 61–76.

    Article  CAS  PubMed  Google Scholar 

  10. Angelucci E, Matthes-Martin S, Baronciani D, et al. Hematopoietic stem cell transplantation in thalassemia major and sickle cell disease: indications and management recommendations from an international expert panel. Haematologica, 2014;99: 811–20.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lucarelli G, Isgrò A, Sodani P, Gaziev J. Hematopoietic stem cell transplantation in thalassemia and sickle cell anemia. Cold Spring Harb Perspect Med. 2012;2: a011825.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Locatelli F, Kabbara N, Ruggeri A, et al. Outcome of patients with hemoglobinopathies given either cord blood or bone marrow transplantation from an HLA-identical sibling. Blood. 2013;122:1072–8.

    Article  CAS  PubMed  Google Scholar 

  13. Sodani P, Isgrò A, Gaziev J, et al. Purified T-depleted, CD34+ peripheral blood and bone marrow cell transplantation from haploidentical mother to child with thalassemia. Blood, 2010;115: 1296–302.

    Article  CAS  PubMed  Google Scholar 

  14. Bertaina A, Merli P, Rutella S, et al. HLA-haploidentical stem cell transplantation after removal of alphabeta+ T and B cells in children with nonmalignant disorders. Blood. 2014;124: 822–6.

    Article  CAS  PubMed  Google Scholar 

  15. Soni S, Breslin N, Cheerva A. Successful unrelated umbilical cord blood transplantation for class 3 beta-thalassemia major using a reduced-toxicity regimen. Pediatr Transplant. 2014;18:E41–3.

    Article  PubMed  Google Scholar 

  16. Kim A, Dean A. Chromatin loop formation in the beta-globin locus and its role in globin gene transcription. Mol Cells. 2012;34:1–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lan X, Khandros E, Huang P, et al. The E3 ligase adaptor molecule SPOP regulates fetal hemoglobin levels in adult erythroid cells. Blood Adv. 2019;3:1586–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Masuda T, Wang X, Maeda M, et al. Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin. Science. 2016;351:285–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sankaran VG, Menne TF, Xu J, et al. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science, 2008;322:1839–42.

    Article  CAS  PubMed  Google Scholar 

  20. Breda L, Carla Casu, Sara Gardenghi, et al. Therapeutic hemoglobin levels after gene transfer in beta-thalassemia mice and in hematopoietic cells of beta-thalassemia and sickle cells disease patients. PLoS One, 2012;7: e32345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bank A, Dorazio R, Leboulch P. A phase I/II clinical trial of beta-globin gene therapy for beta-thalassemia. Ann N Y Acad Sci. 2005;1054:308–16.

    Article  CAS  PubMed  Google Scholar 

  22. Thompson AA, Walters MC, Kwiatkowski J, et al. Gene therapy in patients with transfusion-dependent beta-thalassemia. N Engl J Med. 2018;378:1479–93.

    Article  CAS  PubMed  Google Scholar 

  23. Roselli EA, Mezzadra R, Frittoli MC, et al. Correction of beta-thalassemia major by gene transfer in haematopoietic progenitors of pediatric patients. EMBO Mol Med, 2010;2:315–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yannaki E, Karponi G, Zervou F, et al. Hematopoietic stem cell mobilization for gene therapy: superior mobilization by the combination of granulocyte-colony stimulating factor plus plerixafor in patients with beta-thalassemia major. Hum Gene Ther. 2013;24: 852–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yannaki E, Papayannopoulou T, Jonlin E, et al. Hematopoietic stem cell mobilization for gene therapy of adult patients with severe beta-thalassemia: results of clinical trials using G-CSF or plerixafor in splenectomized and nonsplenectomized subjects. Mol Ther. 2012;20:230–8.

    Article  CAS  PubMed  Google Scholar 

  26. Cavazzana M, Mavilio F. Gene Therapy for Hemoglobinopathies. Hum Gene Ther. 2018.

  27. Dong A, Rivella S, Breda L. Gene therapy for hemoglobinopathies: Progress and challenges. Transl Res. 2013;161: 293–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Malik P, Arumugam PI. Gene therapy for beta-thalassemia. Hematology Am Soc Hematol Educ Program. 2005: p. 45–50.

  29. Negre O, Eggimann AV, Beuzard Y, et al. Gene therapy of the beta-hemoglobinopathies by lentiviral transfer of the beta (A(T87Q))-globin gene. Hum Gene Ther. 2016;27:148–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Payen E, Colomb C, Negre O, Beuzard Y, Hehir K, Leboulch P. Lentivirus vectors in beta-thalassemia. Methods Enzymol. 2012;507:109–24.

    Article  CAS  PubMed  Google Scholar 

  31. Ginn SL, Liao SVL, Dane AP, et al. Lymphomagenesis in SCID-X1 mice following lentivirus-mediated phenotype correction independent of insertional mutagenesis and gammac overexpression. Mol Ther. 2010;18:965–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hacein-Bey-Abina S, Garrigue A, Wang GP, et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest. 2008;118:3132–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Moiani A, Paleari Y, Sartori D, et al. Lentiviral vector integration in the human genome induces alternative splicing and generates aberrant transcripts. J Clin Invest. 2012;122: 1653–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ronen K, Negre O, Roth S, et al. Distribution of lentiviral vector integration sites in mice following therapeutic gene transfer to treat beta-thalassemia. Mol Ther. 2011;19:1273–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kanter J, Walters MC, Hsieh M, et al. Outcomes for initial patient cohorts with up to 33 months of follow-up in the Hgb-206 Phase 1 Trial. Blood. 2018;132:1080–80.

    Article  Google Scholar 

  36. Thompson AA, Walters MC, Kwiatkowski JC, et al. Northstar-2: Updated safety and efficacy analysis of lentiglobin gene therapy in patients with transfusion-dependent β-thalassemia and non-â0/â0 genotypes. Blood. 2019;134:3543–3543.

    Article  Google Scholar 

  37. Lal A, et al. Northstar-3: Interim results from a phase 3 study evaluating lentiglobin gene therapy in patients with transfusion-dependent β-thalassemia and either a β0 or IVS-I-110 mutation at both alleles of the HBB Gene. Blood. 2019;134:815–15.

    Article  Google Scholar 

  38. Gilles AF, Averof M. Functional genetics for all: engineered nucleases, CRISPR and the gene editing revolution. Evodevo. 2014;5:43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Palpant NJ, Dudzinski D. Zinc finger nucleases: Looking toward translation. Gene Ther. 2013;20:121–7.

    Article  CAS  PubMed  Google Scholar 

  40. Scharenberg AM, Duchateau P, Smith J. Genome engineering with TAL-effector nucleases and alternative modular nuclease technologies. Curr Gene Ther. 2013;13:291–303.

    Article  CAS  PubMed  Google Scholar 

  41. Hoban MD, Bauer DE. A genome editing primer for the hematologist. Blood. 2016;127:2525–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rossin EJ, Wu DM. CRISPR-based gene editing: A guide for the clinician. Int Ophthalmol Clin. 2017;57:151–64.

    Article  PubMed  Google Scholar 

  43. Komaroff AL. Gene editing using CRISPR: Why the Excitement? JAMA. 2017;318:699–700.

    Article  CAS  PubMed  Google Scholar 

  44. Dever DP, Porteus MH. The changing landscape of gene editing in hematopoietic stem cells: A step towards Cas9 clinical translation. Curr Opin Hematol, 2017;24: 481–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bauer DE, Kamran SC, Lessard S, et al. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science. 2013;342:253–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Psatha N, Reik A, Phelps S, et al. Disruption of the BCL11A erythroid enhancer reactivates fetal hemoglobin in erythroid cells of patients with beta-thalassemia major. Mol Ther Methods Clin Dev. 2018;10:313–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bauer DE, Orkin SH. Hemoglobin switching’s surprise: the versatile transcription factor BCL11A is a master repressor of fetal hemoglobin. Curr Opin Genet Dev. 2015;33:62–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sankaran VG, Xu JNY Orkin SH. Transcriptional silencing of fetal hemoglobin by BCL11A. Ann NY Acad Sci. 2010;1202:64–8.

    Article  CAS  PubMed  Google Scholar 

  49. Alhashem YN, Vinjamur DS, Basu M, et al. Transcription factors KLF1 and KLF2 positively regulate embryonic and fetal beta-globin genes through direct promoter binding. J Biol Chem. 2011;286:24819–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ikonomi P, Noguchi CT, Miller W, et al. Levels of GATA-1/GATA-2 transcription factors modulate expression of embryonic and fetal hemoglobins. Gene. 2000;261:277–87.

    Article  CAS  PubMed  Google Scholar 

  51. Traxler EA, Yao Y, Wang YD, et al. A genome-editing strategy to treat beta-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Nat Med. 2016;22:987–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lin MI, Wang J, Tan Y, et al. Re-creating hereditary persistence of fetal hemoglobin (HPFH) to treat sickle cell disease (SCD) and β-thalassemia. Blood. 2016;128:4708–4708.

    Article  Google Scholar 

  53. Zhang XH, Tee LY, Wang XG, Huag QS, Yang SH. Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids. 2015;4: e264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lazzarotto CR, Nguyen NT, Tang X, et al. Defining CRISPR-Cas9 genome-wide nuclease activities with CIRCLE-seq. Nat Protoc. 2018;13:2615–2642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cho SW, Kim S, Kim Y, et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 2014;24:132–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cradick TJ, Qiu P, Lee CM, Fine EJ, Bao G, et al. COSMID: A web-based tool for identifying and validating CRISPR/Cas offtarget sites. Mol Ther Nucleic Acids. 2014;3:e214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim D, Bae S, Park J, et al. Digenome-seq: Genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods. 2015;12:237–43.

    Article  CAS  PubMed  Google Scholar 

  58. Tsai SQ, Joung JK. Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases. Nat Rev Genet. 2016;17:300–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Long J, Hoban MD, Cooper AR, et al. Characterization of gene alterations following editing of the beta-globin gene locus in hematopoietic stem/progenitor cells. Mol Ther. 2018;26: 468–79.

    Article  CAS  PubMed  Google Scholar 

  60. Corbacioglu S, Chapin J, Chu-Osier N, et al. Efficacy results with a single dose of autologous crispr-cas9 modified cd34+ hematopoietic stem and progenitor cells in transfusion-dependent β-thalassemia and sickle cell disease. EHA Meeting Abstract. S280.

  61. Marktel S, Scaramuzza, S, Cicalese MP, et al. Intrabone hematopoietic stem cell gene therapy for adult and pediatric patients affected by transfusion-dependent β-thalassemia. Nat Med. 2019;25:234–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Soni.

Additional information

Note

Supplementary material related to this study is available with the online version at www.indianpediatrics.net

Competing interests

The author is also employed by Crispr Therapeutics Inc. that sponsors the CTX001 thalassemia trial. Only publicly available information has been provided and the manuscript was not influenced in any way by this relationship. Part of the text in this manuscript was adapted for pediatrics audience from previously submitted reviews to other journals by the author.

Funding

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soni, S. Gene Therapies for Transfusion-Dependent β-Thalassemia. Indian Pediatr 58, 667–674 (2021). https://doi.org/10.1007/s13312-021-2263-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13312-021-2263-x

Keywords

Navigation