Skip to main content
Log in

Chromatin loop formation in the β-globin locus and its role in globin gene transcription

  • Minireview
  • Published:
Molecules and Cells

Abstact

Although linearly distant along mouse chromosome 7 and human chromosome 11, the mammalian β-globin gene is located in close proximity to the upstream locus control region enhancer when it is actively transcribed in the nuclear chromatin environment of erythroid cells. This organization is thought to generate a chromatin loop between the LCR, a powerful enhancer, and active globin genes by extruding intervening regions containing inactive genes. Loop formation in the β-globin locus requires erythroid specific transcriptional activators, co-factors and insulator-related factors. Chromatin structural features such as histone modifications and DNase I hypersensitive site formation as well as nuclear localization are all involved in loop formation in the locus through diverse mechanisms. Current models envision the formation of the loop as a necessary step in globin gene transcription activation, but this has not been definitively established and many questions remain about what is necessary to achieve globin gene transcription activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brand, M., Ranish, J.A., Kummer, N.T., Hamilton, J., Igarashi, K., Francastel, C., Chi, T.H., Crabtree, G.R., Aebersold, R., and Groudine, M. (2004). Dynamic changes in transcription factor complexes during erythroid differentiation revealed by quantitative proteomics. Nat. Struct. Mol. Biol. 11, 73–80.

    Article  PubMed  CAS  Google Scholar 

  • Bultman, S.J., Gebuhr, T.C., and Magnuson, T. (2005). A Brg1 mutation that uncouples ATPase activity from chromatin remodeling reveals an essential role for SWI/SNF-related complexes in β-globin expression and erythroid development. Genes Dev. 19, 2849–2861.

    Article  PubMed  CAS  Google Scholar 

  • Bushey, A.M., Dorman, E.R., and Corces, V.G. (2008). Chromatin insulators: regulatory mechanisms and epigenetic inheritance. Mol. Cell 32, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Cantor, A.B., and Orkin, S.H. (2002). Transcriptional regulation of erythropoiesis: an affair involving multiple partners. Oncogene 21, 3368–3376.

    Article  PubMed  CAS  Google Scholar 

  • Carter, D., Chakalova, L., Osborne, C.S., Dai, Y., and Fraser, P. (2002). Long-range chromatin regulatory interactions in vivo. Nat. Genet. 32, 623–626.

    Article  PubMed  CAS  Google Scholar 

  • Chien, R., Zeng, W., Kawauchi, S., Bender, M.A., Santos, R., Gregson, H.C., Schmiesing, J.A., Newkirk, D.A., Kong, X., Ball, A.R., Jr., et al. (2011). Cohesin mediates chromatin interactions that regulate mammalian b-globin expression. J. Biol. Chem. 286, 17870–17878.

    Article  PubMed  CAS  Google Scholar 

  • Dean, A. (2006). On a chromosome far, far away: LCRs and gene regulation. Trends Genet. 22, 38–45.

    Article  PubMed  CAS  Google Scholar 

  • Dekker, J., Rippe, K., Dekker, M., and Kleckner, N. (2002). Capturing chromosome conformation. Science 295, 1306–1311.

    Article  PubMed  CAS  Google Scholar 

  • Dostie, J., Richmond, T.A., Arnaout, R.A., Selzer, R.R., Lee, W.L., Honan, T.A., Rubio, E.D., Krumm, A., Lamb, J., Nusbaum, C., et al. (2006). Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res. 16, 1299–1309.

    Article  PubMed  CAS  Google Scholar 

  • Drissen, R., Palstra, R.J., Gillemans, N., Splinter, E., Grosveld, F., Philipsen, S., and de Laat, W. (2004). The active spatial organization of the β-globin locus requires the transcription factor EKLF. Genes Dev. 18, 2485–2490.

    Article  PubMed  CAS  Google Scholar 

  • Du, M.J., Lv, X., Hao, D.L., Zhao, G.W., Wu, X.S., Wu, F., Liu, D.P., and Liang, C.C. (2008). MafK/NF-E2 p18 is required for β-globin genes activation by mediating the proximity of LCR and active bglobin genes in MEL cell line. Int. J. Biochem. Cell. Biol. 40, 1481–1493.

    Article  PubMed  CAS  Google Scholar 

  • Ethier, S.D., Miura, H., and Dostie, J. (2012). Discovering genome regulation with 3C and 3C-related technologies. Biochim. Biophys. Acta 1819, 401–410.

    Article  PubMed  CAS  Google Scholar 

  • Fang, X., Xiang, P., Yin, W., Stamatoyannopoulos, G., and Li, Q. (2007). Cooperativeness of the higher chromatin structure of the b-globin locus revealed by the deletion mutations of DNase I hypersensitive site 3 of the LCR. J. Mol. Biol. 365, 31–37.

    Article  PubMed  CAS  Google Scholar 

  • Francastel, C., Magis, W., and Groudine, M. (2001). Nuclear relocation of a transactivator subunit precedes target gene activation. Proc. Natl. Acad. Sci. USA 98, 12120–12125.

    Article  PubMed  CAS  Google Scholar 

  • Gui, C.Y., and Dean, A. (2003). A major role for the TATA box in recruitment of chromatin modifying complexes to a globin gene promoter. Proc. Natl. Acad. Sci. USA 100, 7009–7014.

    Article  PubMed  CAS  Google Scholar 

  • Hou, C., Dale, R., and Dean, A. (2010). Cell type specificity of chromatin organization mediated by CTCF and cohesin. Proc. Natl. Acad. Sci. USA 107, 3651–3656.

    Article  PubMed  CAS  Google Scholar 

  • Kadauke, S., and Blobel, G.A. (2009). Chromatin loops in gene regulation. Biochim. Biophys. Acta 1789, 17–25.

    Article  PubMed  CAS  Google Scholar 

  • Kiefer, C.M., Lee, J., Hou, C., Dale, R.K., Lee, Y.T., Meier, E.R., Miller, J.L., and Dean, A. (2011). Distinct Ldb1/NLI complexes orchestrate γ-globin repression and reactivation through ETO2 in human adult erythroid cells. Blood 118, 6200–6208.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S.I., Bultman, S.J., Jing, H., Blobel, G.A., and Bresnick, E.H. (2007). Dissecting molecular steps in chromatin domain activation during hematopoietic differentiation. Mol. Cell. Biol. 27, 4551–4565.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S.I., Bultman, S.J., Kiefer, C.M., Dean, A., and Bresnick, E.H. (2009). BRG1 requirement for long-range interaction of a locus control region with a downstream promoter. Proc. Natl. Acad. Sci. USA 106, 2259–2264.

    Article  PubMed  CAS  Google Scholar 

  • Kim, T.K., Hemberg, M., Gray, J.M., Costa, A.M., Bear, D.M., Wu, J., Harmin, D.A., Laptewicz, M., Barbara-Haley, K., Kuersten, S., et al. (2010). Widespread transcription at neuronal activityregulated enhancers. Nature 465, 182–187.

    Article  PubMed  CAS  Google Scholar 

  • Kim, Y.W., Kim, S., Kim, C.G., and Kim, A. (2011). The distinctive roles of erythroid specific activator GATA-1 and NF-E2 in transcription of the human fetal γ-globin genes. Nucleic Acids Res. 39, 6944–6955.

    Article  PubMed  CAS  Google Scholar 

  • Kooren, J., Palstra, R.J., Klous, P., Splinter, E., von Lindern, M., Grosveld, F., and de Laat, W. (2007). β-globin active chromatin hub formation in differentiating erythroid cells and in p45 NF-E2 knock-out mice. J. Biol. Chem. 282, 16544–16552.

    Article  PubMed  CAS  Google Scholar 

  • Lee, H.Y., Johnson, K.D., Fujiwara, T., Boyer, M.E., Kim, S.I., and Bresnick, E.H. (2009). Controlling hematopoiesis through sumoylation-dependent regulation of a GATA factor. Mol. Cell 36, 984–995.

    Article  PubMed  CAS  Google Scholar 

  • Lee, H.Y., Johnson, K.D., Boyer, M.E., and Bresnick, E.H. (2011). Relocalizing genetic loci into specific subnuclear neighborhoods. J. Biol. Chem. 286, 18834–18844.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, J.A., and Fraser, P. (2008). Transcription factories are nuclear subcompartments that remain in the absence of transcription. Genes Dev. 22, 20–25.

    Article  PubMed  CAS  Google Scholar 

  • Orom, U.A., Derrien, T., Beringer, M., Gumireddy, K., Gardini, A., Bussotti, G., Lai, F., Zytnicki, M., Notredame, C., Huang, Q., et al. (2010). Long noncoding RNAs with enhancer-like function in human cells. Cell 143, 46–58.

    Article  PubMed  CAS  Google Scholar 

  • Palstra, R.J., Tolhuis, B., Splinter, E., Nijmeijer, R., Grosveld, F., and de Laat, W. (2003). The β-globin nuclear compartment in development and erythroid differentiation. Nat. Genet. 35, 190–194.

    Article  PubMed  CAS  Google Scholar 

  • Palstra, R.J., Simonis, M., Klous, P., Brasset, E., Eijkelkamp, B., and de Laat, W. (2008). Maintenance of long-range DNA interactions after inhibition of ongoing RNA polymerase II transcription. PLoS One 3, e1661.

    Article  PubMed  Google Scholar 

  • Patrinos, G.P., de Krom, M., de Boer, E., Langeveld, A., Imam, A.M., Strouboulis, J., de Laat, W., and Grosveld, F.G. (2004). Multiple interactions between regulatory regions are required to stabilize an active chromatin hub. Genes Dev. 18, 1495–1509.

    Article  PubMed  CAS  Google Scholar 

  • Ragoczy, T., Bender, M.A., Telling, A., Byron, R., and Groudine, M. (2006). The locus control region is required for association of the murine b-globin locus with engaged transcription factories during erythroid maturation. Genes Dev. 20, 1447–1457.

    Article  PubMed  CAS  Google Scholar 

  • Song, S.-H., Hou, C., and Dean, A. (2007). A positive role for NLI/Ldb1 in long-range b-globin locus control region function. Mol. Cell 28, 810–822.

    Article  PubMed  CAS  Google Scholar 

  • Song, S.-H., Kim, A., Ragoczy, T., Bender, M.A., Groudine, M., and Dean, A. (2010). Multiple functions of Ldb1 required for β-globin activation during erythroid differentiation. Blood 116, 2356–2364.

    Article  PubMed  CAS  Google Scholar 

  • Splinter, E., Heath, H., Kooren, J., Palstra, R.J., Klous, P., Grosveld, F., Galjart, N., and de Laat, W. (2006). CTCF mediates longrange chromatin looping and local histone modification in the bglobin locus. Genes Dev. 20, 2349–2354.

    Article  PubMed  CAS  Google Scholar 

  • Tolhuis, B., Palstra, R.J., Splinter, E., Grosveld, F., and de Laat, W. (2002). Looping and interaction between hypersensitive sites in the active b-globin locus. Mol. Cell 10, 1453–1465.

    Article  PubMed  CAS  Google Scholar 

  • Vakoc, C.R., Letting, D.L., Gheldof, N., Sawado, T., Bender, M.A., Groudine, M., Weiss, M.J., Dekker, J., and Blobel, G.A. (2005). Proximity among distant regulatory elements at the b-globin locus requires GATA-1 and FOG-1. Mol. Cell 17, 453–462.

    Article  PubMed  CAS  Google Scholar 

  • Wadman, I.A., Osada, H., Grutz, G.G., Agulnick, A.D., Westphal, H., Forster, A., and Rabbitts, T.H. (1997). The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J. 16, 3145–3157.

    Article  PubMed  CAS  Google Scholar 

  • Wendt, K.S., and Peters, J.M. (2009). How cohesin and CTCF cooperate in regulating gene expression. Chromosome Res. 17, 201–214.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, H., and Dean, A. (2004). An insulator blocks spreading of histone acetylation and interferes with RNA polymerase II transfer between an enhancer and gene. Nucleic Acids Res. 32, 4903–4919.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann Dean.

About this article

Cite this article

Kim, A., Dean, A. Chromatin loop formation in the β-globin locus and its role in globin gene transcription. Mol Cells 34, 1–5 (2012). https://doi.org/10.1007/s10059-012-0048-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-012-0048-8

Keywords

Navigation