Skip to main content
Log in

Paradigm Shift: Multiple Potential Pathways to Neurodegenerative Dementia

  • Current Perspectives
  • Published:
Neurotherapeutics

Abstract

Neurodegenerative dementia can result from multiple underlying abnormalities, including neurotransmitter imbalances, protein aggregation, and other neurotoxic events. A major complication in identifying effective treatment targets is the frequent co-occurrence of multiple neurodegenerative processes, occurring either in parallel or sequentially. The path towards developing effective treatments for Alzheimer’s disease (AD) and other dementias has been relatively slow and until recently has focused on disease symptoms. Aducanumab and lecanemab, recently approved by the FDA, are meant to target disease structures but have only modest benefit on symptom progression and remain unproven in reversing or preventing dementia. A third, donanemab, appears more promising but awaits FDA approval. Ongoing trials include potential cognition enhancers, new combinations of known drugs for synergistic effects, prodrugs with less toxicity, and increasing interest in drugs targeting neuroinflammation or microbiome. Scientific and technological advances offer the opportunity to move in new therapy directions, such as modifying microglia to prevent or suppress underlying disease. A major challenge, however, is that underlying comorbidities likely influence the effectiveness of therapies. Indeed, the full range of comorbidity, today only definitively identified postmortem, likely contributes to failed clinical trials and overmedication of older adults, since it is difficult to exclude (during life) people unlikely to respond. Our current knowledge thus signals that a paradigm shift towards individualized and multimodal treatments is necessary to effectively advance the field of dementia therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–9.

    Article  PubMed  PubMed Central  Google Scholar 

  2. McKeith IG, Boeve BF, Dickson DW, et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology. 2017;89:88–100.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dubois B, Burn D, Goetz C, et al. Diagnostic procedures for Parkinson’s disease dementia: recommendations from the movement disorder society task force. Mov Disord. 2007;22:2314–24.

    Article  PubMed  Google Scholar 

  4. Sachdev P, Kalaria R, O’Brien J, et al. Diagnostic criteria for vascular cognitive disorders: a VASCOG statement. Alzheimer Dis Assoc Disord. 2014;28:206–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ducharme S, Dols A, Laforce R, et al. Recommendations to distinguish behavioural variant frontotemporal dementia from psychiatric disorders. Brain. 2020;143:1632–50.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Boyle PA, Yu L, Leurgans SE, et al. Attributable risk of Alzheimer’s dementia attributed to age-related neuropathologies. Ann Neurol. 2019;85:114–24.

    Article  CAS  PubMed  Google Scholar 

  7. Schneider JA. Neuropathology of dementia disorders. Continuum (Minneap Minn). 2022;28:834–51.

    PubMed  Google Scholar 

  8. Soto C, Pritzkow S. Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat Neurosci. 2018;21:1332–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mrdjen D, Fox EJ, Bukhari SA, et al. The basis of cellular and regional vulnerability in Alzheimer’s disease. Acta Neuropathol. 2019;138:729–49.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Trejo-Lopez JA, Yachnis AT, Prokop S. Neuropathology of Alzheimer’s disease. Neurotherapeutics. 2022;19:173–85.

    Article  CAS  PubMed  Google Scholar 

  11. Cummings J, Lee G, Nahed P, et al. Alzheimer’s disease drug development pipeline: 2022. Alzheimers Dement (N Y). 2022;8:e12295.

    Article  PubMed  Google Scholar 

  12. Brayne C, Richardson K, Matthews FE, et al. Neuropathological correlates of dementia in over-80-year-old brain donors from the population-based Cambridge city over-75s cohort (CC75C) study. J Alzheimers Dis. 2009;18:645–58.

    Article  PubMed  Google Scholar 

  13. White LR, Edland SD, Hemmy LS, et al. Neuropathologic comorbidity and cognitive impairment in the Nun and Honolulu-Asia aging studies. Neurology. 2016;86:1000–8.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bartus RT, Dean RL 3rd, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science. 1982;217:408–14.

    Article  CAS  PubMed  Google Scholar 

  15. Bowen DM, Smith CB, White P, Davison AN. Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain. 1976;99:459–96.

    Article  CAS  PubMed  Google Scholar 

  16. Davies P, Maloney AJ. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet. 1976;2:1403.

    Article  CAS  PubMed  Google Scholar 

  17. Mesulam M. A horseradish peroxidase method for the identification of the efferents of acetyl cholinesterase-containing neurons. J Histochem Cytochem. 1976;24:1281–5.

    Article  CAS  PubMed  Google Scholar 

  18. Whitehouse PJ, Price DL, Clark AW, Coyle JT, DeLong MR. Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol. 1981;10:122–6.

    Article  CAS  PubMed  Google Scholar 

  19. Drachman DA, Leavitt J. Human memory and the cholinergic system. A relationship to aging? Arch Neurol. 1974;30:113–21.

    Article  CAS  PubMed  Google Scholar 

  20. Summers WK, Majovski LV, Marsh GM, Tachiki K, Kling A. Oral tetrahydroaminoacridine in long-term treatment of senile dementia. Alzheimer type N Engl J Med. 1986;315:1241–5.

    Article  CAS  PubMed  Google Scholar 

  21. Knight R, Khondoker M, Magill N, Stewart R, Landau S. A systematic review and meta-analysis of the effectiveness of acetylcholinesterase inhibitors and memantine in treating the cognitive symptoms of dementia. Dement Geriatr Cogn Disord. 2018;45:131–51.

    Article  CAS  PubMed  Google Scholar 

  22. Cacabelos R, Takeda M, Winblad B. The glutamatergic system and neurodegeneration in dementia: preventive strategies in Alzheimer’s disease. Int J Geriatr Psychiatry. 1999;14:3–47.

    Article  CAS  PubMed  Google Scholar 

  23. Binvignat O, Olloquequi J. Excitotoxicity as a target against neurodegenerative processes. Curr Pharm Des. 2020;26:1251–62.

    Article  CAS  PubMed  Google Scholar 

  24. Andersen JV, Markussen KH, Jakobsen E, et al. Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology. 2021;196:108719.

    Article  CAS  PubMed  Google Scholar 

  25. Xia P, Chen HS, Zhang D, Lipton SA. Memantine preferentially blocks extrasynaptic over synaptic NMDA receptor currents in hippocampal autapses. J Neurosci. 2010;30:11246–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Doody RS, Tariot PN, Pfeiffer E, Olin JT, Graham SM. Meta-analysis of six-month memantine trials in Alzheimer’s disease. Alzheimers Dement. 2007;3:7–17.

    Article  CAS  PubMed  Google Scholar 

  27. Schneider LS, Dagerman KS, Higgins JP, McShane R. Lack of evidence for the efficacy of memantine in mild Alzheimer disease. Arch Neurol. 2011;68:991–8.

    Article  PubMed  Google Scholar 

  28. Atri A, Hendrix SB, Pejović V, et al. Cumulative, additive benefits of memantine-donepezil combination over component monotherapies in moderate to severe Alzheimer’s dementia: a pooled area under the curve analysis. Alzheimers Res Ther. 2015;7:28.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Deardorff WJ, Grossberg GT. A fixed-dose combination of memantine extended-release and donepezil in the treatment of moderate-to-severe Alzheimer’s disease. Drug Des Devel Ther. 2016;10:3267–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang Q, Aldridge GM, Narayanan NS, Anderson SW, Uc EY. Approach to cognitive impairment in Parkinson’s disease. Neurotherapeutics. 2020;17:1495–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen JH, Huang TW, Hong CT. Cholinesterase inhibitors for gait, balance, and fall in Parkinson disease: a meta-analysis. NPJ Parkinsons Dis. 2021;7:103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun C, Armstrong MJ. Treatment of Parkinson’s disease with cognitive impairment: current approaches and future directions. Behav Sci (Basel). 2021;11:54.

    Article  PubMed  Google Scholar 

  33. Baskys A, Hou AC. Vascular dementia: pharmacological treatment approaches and perspectives. Clin Interv Aging. 2007;2:327–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Matsunaga S, Kishi T, Yasue I, Iwata N. Cholinesterase inhibitors for lewy body disorders: a meta-analysis. Int J Neuropsychopharmacol. 2015;19:pyv086.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tsai RM, Boxer AL. Treatment of frontotemporal dementia. Curr Treat Options Neurol. 2014;16:319.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Brennan L, Pantelyat A, Duda JE, et al. Memantine and cognition in Parkinson’s disease dementia/dementia with lewy bodies: a meta-analysis. Mov Disord Clin Pract. 2016;3:161–7.

    Article  PubMed  Google Scholar 

  37. Medoro A, Bartollino S, Mignogna D, et al. Complexity and selectivity of γ-secretase cleavage on multiple substrates: consequences in Alzheimer’s disease and cancer. J Alzheimers Dis. 2018;61:1–15.

    Article  CAS  PubMed  Google Scholar 

  38. Hur JY. γ-secretase in Alzheimer’s disease. Exp Mol Med. 2022;54:433–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cummings J. Anti-amyloid monoclonal antibodies are transformative treatments that redefine Alzheimer’s disease Therapeutics. Drugs. 2023;83:569–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sims JR, Zimmer JA, Evans CD, et al. Donanemab in early symptomatic Alzheimer disease: the TRAILBLAZER-ALZ 2 randomized clinical trial. JAMA. 2023;330:512–27.

    Article  CAS  PubMed  Google Scholar 

  41. Söderberg L, Johannesson M, Nygren P, et al. Lecanemab, aducanumab, and gantenerumab - binding profiles to different forms of amyloid-beta might explain efficacy and side effects in clinical Trials for Alzheimer’s disease. Neurotherapeutics. 2023;20:195–206.

    Article  PubMed  Google Scholar 

  42. Sevigny J, Chiao P, Bussière T, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature. 2016;537:50–6.

    Article  CAS  PubMed  Google Scholar 

  43. Nilsberth C, Westlind-Danielsson A, Eckman CB, et al. The ‘Arctic’ APP mutation (E693G) causes Alzheimer’s disease by enhanced Abeta protofibril formation. Nat Neurosci. 2001;4:887–93.

    Article  CAS  PubMed  Google Scholar 

  44. Lowe SL, Willis BA, Hawdon A, et al. Donanemab (LY3002813) dose-escalation study in Alzheimer’s disease. Alzheimers Dement (N Y). 2021;7:e12112.

    Article  PubMed  Google Scholar 

  45. Shi M, Chu F, Zhu F, Zhu J. Impact of anti-amyloid-β monoclonal antibodies on the pathology and clinical profile of Alzheimer’s disease: a focus on aducanumab and lecanemab. Front Aging Neurosci. 2022;14:870517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Salloway S, Chalkias S, Barkhof F, et al. Amyloid-related imaging abnormalities in 2 phase 3 studies evaluating aducanumab in patients with early Alzheimer disease. JAMA Neurol. 2022;79:13–21.

    Article  PubMed  Google Scholar 

  47. Herring WJ, Ceesay P, Snyder E, et al. Polysomnographic assessment of suvorexant in patients with probable Alzheimer’s disease dementia and insomnia: a randomized trial. Alzheimers Dement. 2020;16:541–51.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mansuri Z, Reddy A, Vadukapuram R, Trivedi C, Amara A. Pimavanserin in the treatment of Parkinson’s disease psychosis: meta-analysis and meta-regression of randomized clinical trials. Innov Clin Neurosci. 2022;19:46–51.

    PubMed  PubMed Central  Google Scholar 

  49. Cummings J, Zhou Y, Lee G, et al. Alzheimer’s disease drug development pipeline: 2023. Alzheimers Dement (N Y). 2023;9: e12385.

    Article  PubMed  Google Scholar 

  50. Cummings J. New approaches to symptomatic treatments for Alzheimer’s disease. Mol Neurodegener. 2021;16:2.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Vaz M, Silvestre S. Alzheimer’s disease: Recent treatment strategies. Eur J Pharmacol. 2020;887:173554.

    Article  CAS  PubMed  Google Scholar 

  52. Weihofen A, Liu Y, Arndt JW, et al. Development of an aggregate-selective, human-derived α-synuclein antibody BIIB054 that ameliorates disease phenotypes in Parkinson’s disease models. Neurobiol Dis. 2019;124:276–88.

    Article  CAS  PubMed  Google Scholar 

  53. Liu P, Wang Y, Sun Y, Peng G. Neuroinflammation as a potential therapeutic target in Alzheimer’s disease. Clin Interv Aging. 2022;17:665–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Latimer CS, Lucot KL, Keene CD, Cholerton B, Montine TJ. Genetic insights into Alzheimer’s disease. Annu Rev Pathol. 2021;16:351–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Novikova G, Kapoor M, Tcw J, et al. Integration of Alzheimer’s disease genetics and myeloid genomics identifies disease risk regulatory elements and genes. Nat Commun. 2021;12:1610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details. J Neurochem. 2016;139(Suppl 2):136–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang C, Wang Y, Wang D, Zhang J, Zhang F. NSAID exposure and risk of Alzheimer’s disease: an updated meta-analysis from cohort studies. Front Aging Neurosci. 2018;10:83.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Heneka MT, Carson MJ, El Khoury J, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14:388–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhao S, Mysler E, Moots RJ. Etanercept for the treatment of rheumatoid arthritis. Immunotherapy. 2018;10:433–45.

    Article  CAS  PubMed  Google Scholar 

  60. De Sousa Rodrigues ME, Houser MC, Walker DI, et al. Targeting soluble tumor necrosis factor as a potential intervention to lower risk for late-onset Alzheimer’s disease associated with obesity, metabolic syndrome, and type 2 diabetes. Alzheimers Res Ther. 2019;12:1.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Torres-Acosta N, O’Keefe JH, O’Keefe EL, Isaacson R, Small G. Therapeutic potential of TNF-α inhibition for Alzheimer’s disease prevention. J Alzheimers Dis. 2020;78:619–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang X, Sun G, Feng T, et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res. 2019;29:787–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rao Y. Omission of previous publications by an author should be corrected. Cell Res. 2020;30:819.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Costa MJF, de Araújo IDT, da Rocha AL, et al. Relationship of Porphyromonas gingivalis and Alzheimer’s disease: a systematic review of pre-clinical studies. Clin Oral Investig. 2021;25:797–806.

    Article  PubMed  Google Scholar 

  65. Arastu-Kapur S, Nguyen M, Raha D, et al. Treatment of Porphyromonas gulae infection and downstream pathology in the aged dog by lysine-gingipain inhibitor COR388. Pharmacol Res Perspect. 2020;8:e00562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Costa M, Páez A. Emerging insights into the role of albumin with plasma exchange in Alzheimer’s disease management. Transfus Apher Sci. 2021;60:103164.

    Article  PubMed  Google Scholar 

  67. Hannestad J, Duclos T, Chao W, et al. Safety and tolerability of GRF6019 infusions in severe Alzheimer’s disease: a phase II double-blind placebo-controlled trial. J Alzheimers Dis. 2021;81:1649–62.

    Article  CAS  PubMed  Google Scholar 

  68. Doroszkiewicz J, Mroczko B. New possibilities in the therapeutic approach to Alzheimer’s disease. Int J Mol Sci. 2022;23:8902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol. 2018;18:225–42.

    Article  CAS  PubMed  Google Scholar 

  70. Mehl LC, Manjally AV, Bouadi O, Gibson EM, Tay TL. Microglia in brain development and regeneration. Development. 2022;149:dev200425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yu F, Wang Y, Stetler AR, et al. Phagocytic microglia and macrophages in brain injury and repair. CNS Neurosci Ther. 2022;28:1279–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Borst K, Dumas AA, Prinz M. Microglia: I=immune and non-immune functions. Immunity. 2021;54:2194–208.

    Article  CAS  PubMed  Google Scholar 

  73. Salter MW, Stevens B. Microglia emerge as central players in brain disease. Nat Med. 2017;23:1018–27.

    Article  CAS  PubMed  Google Scholar 

  74. Blinzinger K, Kreutzberg G. Displacement of synaptic terminals from regenerating motoneurons by microglial cells. Z Zellforsch Mikrosk Anat. 1968;85:145–57.

    Article  CAS  PubMed  Google Scholar 

  75. Cockram TOJ, Dundee JM, Popescu AS, Brown GC. The phagocytic code regulating phagocytosis of mammalian cells. Front Immunol. 2021;12:629979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Colonna M, Wang Y. TREM2 variants: new keys to decipher Alzheimer disease pathogenesis. Nat Rev Neurosci. 2016;17:201–7.

    Article  CAS  PubMed  Google Scholar 

  77. Wang S, Mustafa M, Yuede CM, et al. Anti-human TREM2 induces microglia proliferation and reduces pathology in an Alzheimer’s disease model. J Exp Med. 2020;217:e20200785.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Werneburg S, Jung J, Kunjamma RB, et al. Targeted complement inhibition at synapses prevents microglial synaptic engulfment and synapse loss in demyelinating disease. Immunity. 2020;52:167-182.e7.

    Article  CAS  PubMed  Google Scholar 

  79. Litvinchuk A, Wan YW, Swartzlander DB, et al. Complement C3aR inactivation attenuates Tau pathology and reverses an immune network deregulated in tauopathy models and Alzheimer’s disease. Neuron. 2018;100:1337-1353.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Anwar S, Pons V, Rivest S. Microglia purinoceptor P2Y6: an emerging therapeutic target in CNS diseases. Cells. 2020;9:1595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Elmore MR, Lee RJ, West BL, Green KN. Characterizing newly repopulated microglia in the adult mouse: impacts on animal behavior, cell morphology, and neuroinflammation. PLoS ONE. 2015;10:e0122912.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Basilico B, Ferrucci L, Khan A, et al. What microglia depletion approaches tell us about the role of microglia on synaptic function and behavior. Front Cell Neurosci. 2022;16:1022431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Graykowski D, Cudaback E. Don’t know what you got till it’s gone: microglial depletion and neurodegeneration. Neural Regen Res. 2021;16:1921–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mancuso R, Fryatt G, Cleal M, et al. CSF1R inhibitor JNJ-40346527 attenuates microglial proliferation and neurodegeneration in P301S mice. Brain. 2019;142:3243–64.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Romero-Molina C, Navarro V, Jimenez S, et al. Should we open fire on microglia? Depletion models as tools to elucidate microglial role in health and Alzheimer’s disease. Int J Mol Sci. 2021;22:9734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li X, Zhu H, Sun X, et al. Human neural stem cell transplantation rescues cognitive defects in APP/PS1 model of Alzheimer’s disease by enhancing neuronal connectivity and metabolic activity. Front Aging Neurosci. 2016;8:282.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Jeyakumar M, Lee JP, Sibson NR, et al. Neural stem cell transplantation benefits a monogenic neurometabolic disorder during the symptomatic phase of disease. Stem Cells. 2009;27:2362–70.

    Article  CAS  PubMed  Google Scholar 

  88. Yang Y, Aloi MS, Cudaback E, et al. Wild-type bone marrow transplant partially reverses neuroinflammation in progranulin-deficient mice. Lab Invest. 2014;94:1224–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yang Y, Cudaback E, Jorstad NL, et al. APOE3, but not APOE4, bone marrow transplantation mitigates behavioral and pathological changes in a mouse model of Alzheimer disease. Am J Pathol. 2013;183:905–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Das MM, Godoy M, Chen S, et al. Young bone marrow transplantation preserves learning and memory in old mice. Commun Biol. 2019;2:73.

    Article  PubMed  PubMed Central  Google Scholar 

  91. El-Akabawy G, Aabed K, Rashed LA, et al. Preventive effects of bone marrow-derived mesenchymal stem cell transplantation in a D-galactose-induced brain aging in rats. Folia Morphol (Warsz). 2022;81:632–49.

    Article  CAS  PubMed  Google Scholar 

  92. Li C, Chen YH, Zhang K. Neuroprotective properties and therapeutic potential of bone marrow-Derived microglia in Alzheimer’s disease. Am J Alzheimers Dis Other Demen. 2020;35:1533317520927169.

    Article  PubMed  Google Scholar 

  93. Han F, Bi J, Qiao L, Arancio O. Stem cell therapy for Alzheimer’s disease. Adv Exp Med Biol. 2020;1266:39–55.

    Article  CAS  PubMed  Google Scholar 

  94. Bae JS, Jin HK, Lee JK, Richardson JC, Carter JE. Bone marrow-derived mesenchymal stem cells contribute to the reduction of amyloid-β deposits and the improvement of synaptic transmission in a mouse model of pre-dementia Alzheimer’s disease. Curr Alzheimer Res. 2013;10:524–31.

    Article  CAS  PubMed  Google Scholar 

  95. Wang YK, Zhu WW, Wu MH, et al. Human clinical-grade parthenogenetic ESC-derived dopaminergic neurons recover locomotive defects of nonhuman primate models of Parkinson’s disease. Stem Cell Reports. 2018;11:171–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sivandzade F, Cucullo L. Regenerative stem cell therapy for neurodegenerative diseases: an overview. Int J Mol Sci. 2021;22:2153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Brody M, Agronin M, Herskowitz BJ, et al. Results and insights from a phase I clinical trial of Lomecel-B for Alzheimer’s disease. Alzheimers Dement. 2023;19:261–73.

    Article  CAS  PubMed  Google Scholar 

  98. Piao J, Zabierowski S, Dubose BN, et al. Preclinical efficacy and safety of a human embryonic stem cell-derived midbrain dopamine progenitor product, MSK-DA01. Cell Stem Cell. 2021;28:217-229.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cecerska-Heryć E, Pękała M, Serwin N, et al. The use of stem cells as a potential treatment method for selected neurodegenerative diseases: review. Cell Mol Neurobiol. 2023;2643–73.

  100. Hoang DM, Pham PT, Bach TQ, et al. Stem cell-based therapy for human diseases. Signal Transduct Target Ther. 2022;7:272.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Rosser AE, Busse ME, Gray WP, et al. Translating cell therapies for neurodegenerative diseases: Huntington’s disease as a model disorder. Brain. 2022;145:1584–97.

    Article  PubMed  PubMed Central  Google Scholar 

  102. NIA. Advancing research on Alzheimer’s disease (AD) and AD-related dementias (ADRD) (R41/R42 clinical trial optional). Health and Human Services. 2023. https://grants.nih.gov/grants/guide/pa-files/PAS-22-197.html. Accessed 19 Sept 2023.

  103. U.S. Food and Drug Administration. Considerations for developing the indications and usage section of prescription drug labeling. 2017. https://www.fda.gov/media/109300/download. Accessed 19 Sept 2023.

  104. Turgeon J, Michaud V, Steffen L. The dangers of polypharmacy in elderly patients. JAMA Intern Med. 2017;177:1544.

    Article  PubMed  Google Scholar 

  105. Latimer CS, Burke BT, Liachko NF, et al. Resistance and resilience to Alzheimer’s disease pathology are associated with reduced cortical pTau and absence of limbic-predominant age-related TDP-43 encephalopathy in a community-based cohort. Acta Neuropathol Commun. 2019;7:91.

    Article  PubMed  Google Scholar 

  106. SantaCruz KS, Sonnen JA, Pezhouh MK, et al. Alzheimer disease pathology in subjects without dementia in 2 studies of aging: the Nun Study and the Adult Changes in Thought Study. J Neuropathol Exp Neurol. 2011;70:832–40.

    Article  PubMed  Google Scholar 

  107. Montine TJ, Corrada MM, Kawas C, et al. Association of cognition and dementia with neuropathologic changes of Alzheimer disease and other conditions in the oldest-old. Neurology. 2022;99:e1067–78.

    Article  PubMed  PubMed Central  Google Scholar 

  108. White LR, Corrada MM, Kawas CH, et al. Neuropathologic changes of Alzheimer’s disease and related dementias: relevance to future prevention. J Alzheimers Dis. 2023;307–16.

  109. Kovacs GG, Milenkovic I, Wöhrer A, et al. Non-Alzheimer neurodegenerative pathologies and their combinations are more frequent than commonly believed in the elderly brain: a community-based autopsy series. Acta Neuropathol. 2013;126:365–84.

    Article  CAS  PubMed  Google Scholar 

  110. Rahimi J, Kovacs GG. Prevalence of mixed pathologies in the aging brain. Alzheimers Res Ther. 2014;6:82.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Boyle PA, Yang J, Yu L, et al. Varied effects of age-related neuropathologies on the trajectory of late life cognitive decline. Brain. 2017;140:804–12.

    PubMed  PubMed Central  Google Scholar 

  112. Sin MK, Cheng Y, Roseman JM, et al. Characteristics and predictors of Alzheimer’s disease resilience phenotype. J Clin Med. 2023;12:2463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Beach TG, Malek-Ahmadi M. Alzheimer’s disease neuropathological comorbidities are common in the younger-old. J Alzheimers Dis. 2021;79:389–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Custodio N, Montesinos R, Lira D, et al. Mixed dementia: a review of the evidence. Dement Neuropsychol. 2017;11:364–70.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Nag S, Yu L, Capuano AW, et al. Hippocampal sclerosis and TDP-43 pathology in aging and Alzheimer disease. Ann Neurol. 2015;77:942–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nelson PT, Brayne C, Flanagan ME, et al. Frequency of LATE neuropathologic change across the spectrum of Alzheimer’s disease neuropathology: combined data from 13 community-based or population-based autopsy cohorts. Acta Neuropathol. 2022;144:27–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ferman TJ, Aoki N, Crook JE, et al. The limbic and neocortical contribution of α-synuclein, tau, and amyloid β to disease duration in dementia with Lewy bodies. Alzheimers Dement. 2018;14:330–9.

    Article  PubMed  Google Scholar 

  118. Liu KY, Reeves S, McAleese KE, et al. Neuropsychiatric symptoms in limbic-predominant age-related TDP-43 encephalopathy and Alzheimer’s disease. Brain. 2020;143:3842–9.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Thal DR, Tomé SO. The central role of tau in Alzheimer’s disease: from neurofibrillary tangle maturation to the induction of cell death. Brain Res Bull. 2022;190:204–17.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by NIH grants AG053983 and AG057707 (TJM and LRW, MPIs).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amalia Perna.

Ethics declarations

Conflict of Interest

All authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perna, A., Montine, K.S., White, L.R. et al. Paradigm Shift: Multiple Potential Pathways to Neurodegenerative Dementia. Neurotherapeutics 20, 1641–1652 (2023). https://doi.org/10.1007/s13311-023-01441-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-023-01441-w

Keywords

Navigation