Skip to main content

Stem Cell Therapy for Alzheimer’s Disease

  • Chapter
  • First Online:
Stem Cell-based Therapy for Neurodegenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1266))

Abstract

Alzheimer’s disease (AD) is the most common neurodegenerative disease caused by eventually aggregated amyloid β (Aβ) plaques in degenerating neurons of the aging brain. These aggregated protein plaques mainly consist of Aβ fibrils and neurofibrillary tangles (NFTs) of phosphorylated tau protein. Even though some cholinesterase inhibitors, NMDA receptor antagonist, and monoclonal antibodies were developed to inhibit neurodegeneration or activate neural regeneration or clear off the Aβ deposits, none of the treatment is effective in improving the cognitive and memory dysfunctions of the AD patients. Thus, stem cell therapy represents a powerful tool for the treatment of AD. In addition to discussing the advents in molecular pathogenesis and animal models of this disease and the treatment approaches using small molecules and immunoglobulins against AD, we will focus on the stem cell sources for AD using neural stem cells (NSCs); embryonic stem cells (ESCs); and mesenchymal stem cells (MSCs) from bone marrow, umbilical cord, and umbilical cord blood. In particular, patient-specific-induced pluripotent stem cells (iPS cells) are proposed as a future prospective and the challenges for the treatment of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • R.R. Ager, J.L. Davis, A. Agazaryan, F. Benavente, W.W. Poon, F.M. LaFerla, M. Blurton-Jones, Human neural stem cells improve cognition and promote synaptic growth in two complementary transgenic models of Alzheimer’s disease and neuronal loss. Hippocampus 25, 813–826 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • J.S. Bae, H.K. Jin, J.K. Lee, J.C. Richardson, J.E. Carter, Bone marrow-derived mesenchymal stem cells contribute to the reduction of amyloid-beta deposits and the improvement of synaptic transmission in a mouse model of pre-dementia Alzheimer’s disease. Curr. Alzheimer Res. 10, 524–531 (2013)

    Article  CAS  PubMed  Google Scholar 

  • M. Barbier, D. Wallon, I. Le Ber, Monogenic inheritance in early-onset dementia: illustration in Alzheimer’s disease and frontotemporal lobar dementia. Geriatr. Psychol. Neuropsychiatr. Vieil. 16, 289–297 (2018)

    PubMed  Google Scholar 

  • D.E. Barnes, K. Yaffe, The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 10, 819–828 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  • J. Blanchard, M.O. Chohan, B. Li, F. Liu, K. Iqbal, I. Grundke-Iqbal, Beneficial effect of a CNTF tetrapeptide on adult hippocampal neurogenesis, neuronal plasticity, and spatial memory in mice. J. Alzheimers Dis. 21, 1185–1195 (2010)

    Article  CAS  PubMed  Google Scholar 

  • M. Blurton-Jones, M. Kitazawa, H. Martinez-Coria, N.A. Castello, F.J. Muller, J.F. Loring, T.R. Yamasaki, W.W. Poon, K.N. Green, F.M. LaFerla, Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc. Natl. Acad. Sci. U. S. A. 106, 13594–13599 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • M.M. Boisvert, G.A. Erikson, M.N. Shokhirev, N.J. Allen, The aging astrocyte transcriptome from multiple regions of the mouse brain. Cell Rep. 22, 269–285 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • A.M. Bond, G.L. Ming, H. Song, Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell 17, 385–395 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • S. Brunholz, S. Sisodia, A. Lorenzo, C. Deyts, S. Kins, G. Morfini, Axonal transport of APP and the spatial regulation of APP cleavage and function in neuronal cells. Exp. Brain Res. 217, 353–364 (2012)

    Article  CAS  PubMed  Google Scholar 

  • C. Cardenas-Aguayo Mdel, S.F. Kazim, I. Grundke-Iqbal, K. Iqbal, Neurogenic and neurotrophic effects of BDNF peptides in mouse hippocampal primary neuronal cell cultures. PLoS One 8, e53596 (2013)

    Article  PubMed  CAS  Google Scholar 

  • A. Castane, D.E. Theobald, T.W. Robbins, Selective lesions of the dorsomedial striatum impair serial spatial reversal learning in rats. Behav. Brain Res. 210, 74–83 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  • M.Y. Cha, Y.W. Kwon, H.S. Ahn, H. Jeong, Y.Y. Lee, M. Moon, S.H. Baik, D.K. Kim, H. Song, E.C. Yi, et al., Protein-induced pluripotent stem cells ameliorate cognitive dysfunction and reduce Abeta deposition in a mouse model of Alzheimer’s disease. Stem Cells Transl. Med. 6, 293–305 (2017)

    Article  CAS  PubMed  Google Scholar 

  • K.A. Chang, H.J. Kim, Y. Joo, S. Ha, Y.H. Suh, The therapeutic effects of human adipose-derived stem cells in Alzheimer’s disease mouse models. Neurodegener Dis 13, 99–102 (2014)

    Article  CAS  PubMed  Google Scholar 

  • V. Chouraki, S. Seshadri, Genetics of Alzheimer’s disease. Adv. Genet. 87, 245–294 (2014)

    Article  CAS  PubMed  Google Scholar 

  • D.H. Chui, H. Tanahashi, K. Ozawa, S. Ikeda, F. Checler, O. Ueda, H. Suzuki, W. Araki, H. Inoue, K. Shirotani, et al., Transgenic mice with Alzheimer presenilin 1 mutations show accelerated neurodegeneration without amyloid plaque formation. Nat. Med. 5, 560–564 (1999)

    Article  CAS  PubMed  Google Scholar 

  • V. Coric, C.H. van Dyck, S. Salloway, N. Andreasen, M. Brody, R.W. Richter, H. Soininen, S. Thein, T. Shiovitz, G. Pilcher, et al., Safety and tolerability of the gamma-secretase inhibitor avagacestat in a phase 2 study of mild to moderate Alzheimer disease. Arch. Neurol. 69, 1430–1440 (2012)

    Article  PubMed  Google Scholar 

  • J.L. Cummings, T. Morstorf, K. Zhong, Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res. Ther. 6, 37 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  • J. Cummings, G. Lee, T. Mortsdorf, A. Ritter, K. Zhong, Alzheimer’s disease drug development pipeline: 2017. Alzheimers Dement 3, 367–384 (2017)

    Article  Google Scholar 

  • R. Dodel, A. Rominger, P. Bartenstein, F. Barkhof, K. Blennow, S. Forster, Y. Winter, J.P. Bach, J. Popp, J. Alferink, et al., Intravenous immunoglobulin for treatment of mild-to-moderate Alzheimer’s disease: a phase 2, randomised, double-blind, placebo-controlled, dose-finding trial. Lancet Neurol. 12, 233–243 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • H. Du, L. Guo, F. Fang, D. Chen, A.A. Sosunov, G.M. McKhann, Y. Yan, C. Wang, H. Zhang, J.D. Molkentin, et al., Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer’s disease. Nat. Med. 14, 1097–1105 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • K. Duff, F. Suleman, Transgenic mouse models of Alzheimer’s disease: how useful have they been for therapeutic development? Brief. Funct. Genomic. Proteomic. 3, 47–59 (2004)

    Article  CAS  PubMed  Google Scholar 

  • S. Essayan-Perez, B. Zhou, A.M. Nabet, M. Wernig, Y.A. Huang, Modeling Alzheimer’s disease with human iPS cells: advancements, lessons, and applications. Neurobiol. Dis. 130, 104503 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • X. Fan, D. Sun, X. Tang, Y. Cai, Z.Q. Yin, H. Xu, Stem-cell challenges in the treatment of Alzheimer’s disease: a long way from bench to bedside. Med. Res. Rev. 34, 957 (2014)

    Article  CAS  PubMed  Google Scholar 

  • D.G. Flood, Y.G. Lin, D.M. Lang, S.P. Trusko, J.D. Hirsch, M.J. Savage, R.W. Scott, D.S. Howland, A transgenic rat model of Alzheimer’s disease with extracellular Abeta deposition. Neurobiol. Aging 30, 1078–1090 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Z. Garate, B.R. Davis, O. Quintana-Bustamante, J.C. Segovia, New frontier in regenerative medicine: site-specific gene correction in patient-specific induced pluripotent stem cells. Hum. Gene Ther. 24, 571–583 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • K.O. Garcia, F.L. Ornellas, P.K. Martin, C.L. Patti, L.E. Mello, R. Frussa-Filho, S.W. Han, B.M. Longo, Therapeutic effects of the transplantation of VEGF overexpressing bone marrow mesenchymal stem cells in the hippocampus of murine model of Alzheimer’s disease. Front. Aging Neurosci. 6, 30 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • S. Gilman, M. Koller, R.S. Black, L. Jenkins, S.G. Griffith, N.C. Fox, L. Eisner, L. Kirby, M.B. Rovira, F. Forette, et al., Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology 64, 1553–1562 (2005)

    Article  CAS  PubMed  Google Scholar 

  • M. Goedert, A. Klug, R.A. Crowther, Tau protein, the paired helical filament and Alzheimer’s disease. J. Alzheimers Dis. 9, 195–207 (2006)

    Article  CAS  PubMed  Google Scholar 

  • L.S. Goldstein, Axonal transport and neurodegenerative disease: can we see the elephant? Prog. Neurobiol. 99, 186–190 (2012)

    Article  CAS  PubMed  Google Scholar 

  • S. Gunawardena, L.S. Goldstein, Disruption of axonal transport and neuronal viability by amyloid precursor protein mutations in Drosophila. Neuron 32, 389–401 (2001)

    Article  CAS  PubMed  Google Scholar 

  • M. Han, Y. Liu, Q. Tan, B. Zhang, W. Wang, J. Liu, X.J. Zhang, Y.Y. Wang, J.M. Zhang, Therapeutic efficacy of stemazole in a beta-amyloid injection rat model of Alzheimer’s disease. Eur. J. Pharmacol. 657, 104–110 (2011)

    Article  CAS  PubMed  Google Scholar 

  • F. Han, W. Wang, B. Chen, C. Chen, S. Li, X. Lu, J. Duan, Y. Zhang, Y.A. Zhang, W. Guo, et al., Human induced pluripotent stem cell-derived neurons improve motor asymmetry in a 6-hydroxydopamine-induced rat model of Parkinson’s disease. Cytotherapy 17, 665–679 (2015)

    Article  CAS  PubMed  Google Scholar 

  • F. Han, C. Liu, J. Huang, J. Chen, C. Wei, X. Geng, Y. Liu, D. Han, M. Li, The application of patient-derived induced pluripotent stem cells for modeling and treatment of Alzheimer’s disease. Brain Sci. Adv. 5(1), 21–40 (2019)

    Article  Google Scholar 

  • A. Herreman, D. Hartmann, W. Annaert, P. Saftig, K. Craessaerts, L. Serneels, L. Umans, V. Schrijvers, F. Checler, H. Vanderstichele, et al., Presenilin 2 deficiency causes a mild pulmonary phenotype and no changes in amyloid precursor protein processing but enhances the embryonic lethal phenotype of presenilin 1 deficiency. Proc. Natl. Acad. Sci. U. S. A. 96, 11872–11877 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • C. Herrera-Arozamena, O. Marti-Mari, M. Estrada, M. de la Fuente Revenga, M.I. Rodriguez-Franco, Recent advances in neurogenic small molecules as innovative treatments for neurodegenerative diseases. Molecules 21, 1165 (2016)

    Article  PubMed Central  CAS  Google Scholar 

  • D. Hockemeyer, H. Wang, S. Kiani, C.S. Lai, Q. Gao, J.P. Cassady, G.J. Cost, L. Zhang, Y. Santiago, J.C. Miller, et al., Genetic engineering of human pluripotent cells using TALE nucleases. Nat. Biotechnol. 29, 731–734 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D.M. Holtzman, J.C. Morris, A.M. Goate, Alzheimer’s disease: the challenge of the second century. Sci. Transl. Med. 3, 77sr71 (2011)

    Google Scholar 

  • H. Huang, H. Xi, L. Chen, F. Zhang, Y. Liu, Long-term outcome of olfactory ensheathing cell therapy for patients with complete chronic spinal cord injury. Cell Transplant. 21(Suppl 1), S23–S31 (2012)

    Article  PubMed  Google Scholar 

  • K. Iijima, K. Iijima-Ando, Drosophila models of Alzheimer’s amyloidosis: the challenge of dissecting the complex mechanisms of toxicity of amyloid-beta 42. J. Alzheimers Dis. 15, 523–540 (2008)

    Article  CAS  PubMed  Google Scholar 

  • M.A. Israel, S.H. Yuan, C. Bardy, S.M. Reyna, Y. Mu, C. Herrera, M.P. Hefferan, S. Van Gorp, K.L. Nazor, F.S. Boscolo, et al., Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature 482, 216–220 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • K. Jin, L. Xie, X. Mao, M.B. Greenberg, A. Moore, B. Peng, R.B. Greenberg, D.A. Greenberg, Effect of human neural precursor cell transplantation on endogenous neurogenesis after focal cerebral ischemia in the rat. Brain Res. 1374, 56–62 (2011)

    Article  CAS  PubMed  Google Scholar 

  • P. Joshi, J.O. Liang, K. DiMonte, J. Sullivan, S.W. Pimplikar, Amyloid precursor protein is required for convergent-extension movements during Zebrafish development. Dev. Biol. 335, 1–11 (2009)

    Article  CAS  PubMed  Google Scholar 

  • W. Kalback, M.D. Watson, T.A. Kokjohn, Y.M. Kuo, N. Weiss, D.C. Luehrs, J. Lopez, D. Brune, S.S. Sisodia, M. Staufenbiel, et al., APP transgenic mice Tg2576 accumulate Abeta peptides that are distinct from the chemically modified and insoluble peptides deposited in Alzheimer’s disease senile plaques. Biochemistry 41, 922–928 (2002)

    Article  CAS  PubMed  Google Scholar 

  • J.E. Kang, M.M. Lim, R.J. Bateman, J.J. Lee, L.P. Smyth, J.R. Cirrito, N. Fujiki, S. Nishino, D.M. Holtzman, Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle. Science 326, 1005–1007 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • J.M. Kang, B.K. Yeon, S.J. Cho, Y.H. Suh, Stem cell therapy for Alzheimer’s disease: a review of recent clinical trials. J. Alzheimers Dis. 54, 879–889 (2016)

    Article  PubMed  Google Scholar 

  • H.J. Kim, J.H. Lee, S.H. Kim, Therapeutic effects of human mesenchymal stem cells on traumatic brain injury in rats: secretion of neurotrophic factors and inhibition of apoptosis. J. Neurotrauma 27, 131–138 (2010)

    Article  PubMed  Google Scholar 

  • H.J. Kim, S.W. Seo, J.W. Chang, J.I. Lee, C.H. Kim, J. Chin, S.J. Choi, H. Kwon, H.J. Yun, J.M. Lee, et al., Stereotactic brain injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer’s disease dementia: a phase 1 clinical trial. Alzheimers Dement 1, 95–102 (2015)

    Article  Google Scholar 

  • S. Kuruppu, N.W. Rajapakse, A.J. Spicer, H.C. Parkington, A.I. Smith, Stimulating the activity of amyloid-Beta degrading enzymes: a novel approach for the therapeutic manipulation of amyloid-beta levels. J. Alzheimers Dis. 54, 891–895 (2016)

    Article  CAS  PubMed  Google Scholar 

  • J.K. Lee, H.K. Jin, J.S. Bae, Bone marrow-derived mesenchymal stem cells reduce brain amyloid-beta deposition and accelerate the activation of microglia in an acutely induced Alzheimer’s disease mouse model. Neurosci. Lett. 450, 136–141 (2009)

    Article  CAS  PubMed  Google Scholar 

  • J.K. Lee, H.K. Jin, S. Endo, E.H. Schuchman, J.E. Carter, J.S. Bae, Intracerebral transplantation of bone marrow-derived mesenchymal stem cells reduces amyloid-beta deposition and rescues memory deficits in Alzheimer’s disease mice by modulation of immune responses. Stem Cells 28, 329–343 (2010)

    CAS  PubMed  Google Scholar 

  • H.J. Lee, I.J. Lim, S.W. Park, Y.B. Kim, Y. Ko, S.U. Kim, Human neural stem cells genetically modified to express human nerve growth factor (NGF) gene restore cognition in the mouse with ibotenic acid-induced cognitive dysfunction. Cell Transplant. 21, 2487–2496 (2012)

    Article  PubMed  Google Scholar 

  • I.S. Lee, K. Jung, I.S. Kim, H. Lee, M. Kim, S. Yun, K. Hwang, J.E. Shin, K.I. Park, Human neural stem cells alleviate Alzheimer-like pathology in a mouse model. Mol. Neurodegener. 10, 38 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • W.C. Leon, F. Canneva, V. Partridge, S. Allard, M.T. Ferretti, A. DeWilde, F. Vercauteren, R. Atifeh, A. Ducatenzeiler, W. Klein, A novel transgenic rat model with a full Alzheimer’s-like amyloid pathology displays pre-plaque intracellular amyloid-β-associated cognitive impairment. J. Alzheimers Dis. 20, 113–126 (2010)

    Article  CAS  PubMed  Google Scholar 

  • X. Li, H. Zhu, X. Sun, F. Zuo, J. Lei, Z. Wang, X. Bao, R. Wang, Human neural stem cell transplantation rescues cognitive defects in APP/PS1 model of Alzheimer’s disease by enhancing neuronal connectivity and metabolic activity. Front. Aging Neurosci. 8, 282 (2016)

    PubMed  PubMed Central  Google Scholar 

  • H.K. Liao, Y. Wang, K.E. Noack Watt, Q. Wen, J. Breitbach, C.K. Kemmet, K.J. Clark, S.C. Ekker, J.J. Essner, M. McGrail, Tol2 gene trap integrations in the zebrafish amyloid precursor protein genes appa and aplp2 reveal accumulation of secreted APP at the embryonic veins. Dev. Dyn. 241, 415–425 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • G.J. Lieschke, P.D. Currie, Animal models of human disease: zebrafish swim into view. Nat. Rev. Genet. 8, 353–367 (2007)

    Article  CAS  PubMed  Google Scholar 

  • E.M. Lopez, K.F. Bell, A. Ribeiro-da-Silva, A.C. Cuello, Early changes in neurons of the hippocampus and neocortex in transgenic rats expressing intracellular human a-beta. J. Alzheimers Dis. 6, 421–431 (2004).; discussion 443-429

    Article  CAS  PubMed  Google Scholar 

  • V. Machairaki, J. Ryu, A. Peters, Q. Chang, T. Li, T.S. Park, P.W. Burridge, C.C. Talbot Jr., L. Asnaghi, L. Martin, et al., Induced pluripotent stem cells from familial Alzheimer’s disease patients differentiate into mature neurons with amyloidogenic properties. Stem Cells Dev 23, 2996 (2014)

    Article  CAS  Google Scholar 

  • E.M. Mandelkow, E. Mandelkow, Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb. Perspect. Med. 2, a006247 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • H.E. Marei, A. Farag, A. Althani, N. Afifi, A. Abd-Elmaksoud, S. Lashen, S. Rezk, R. Pallini, P. Casalbore, C. Cenciarelli, Human olfactory bulb neural stem cells expressing hNGF restore cognitive deficit in Alzheimer’s disease rat model. J. Cell. Physiol 230, 116 (2014)

    Article  CAS  Google Scholar 

  • M.P. Mattson, Pathways towards and away from Alzheimer’s disease. Nature 430, 631–639 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • F.H. Moghadam, H. Alaie, K. Karbalaie, S. Tanhaei, M.H. Nasr Esfahani, H. Baharvand, Transplantation of primed or unprimed mouse embryonic stem cell-derived neural precursor cells improves cognitive function in Alzheimerian rats. Differentiation 78, 59–68 (2009)

    Article  CAS  PubMed  Google Scholar 

  • C.L. Moreno, L. Della Guardia, V. Shnyder, M. Ortiz-Virumbrales, I. Kruglikov, B. Zhang, E.E. Schadt, R.E. Tanzi, S. Noggle, C. Buettner, et al., iPSC-derived familial Alzheimer’s PSEN2 (N141I) cholinergic neurons exhibit mutation-dependent molecular pathology corrected by insulin signaling. Mol. Neurodegener. 13, 33 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • A.A. Moustafa, M. Hassan, D.H. Hewedi, I. Hewedi, J.K. Garami, H. Al Ashwal, N. Zaki, S.Y. Seo, V. Cutsuridis, S.L. Angulo, et al., Genetic underpinnings in Alzheimer’s disease - a review. Rev. Neurosci. 29, 21–38 (2018)

    Article  CAS  PubMed  Google Scholar 

  • K. Mullane, M. Williams, Alzheimer’s therapeutics: continued clinical failures question the validity of the amyloid hypothesis-but what lies beyond? Biochem. Pharmacol. 85, 289–305 (2013)

    Article  CAS  PubMed  Google Scholar 

  • C.R. Muratore, H.C. Rice, P. Srikanth, D.G. Callahan, T. Shin, L.N. Benjamin, D.M. Walsh, D.J. Selkoe, T.L. Young-Pearse, The familial Alzheimer’s disease APPV717I mutation alters APP processing and Tau expression in iPSC-derived neurons. Hum. Mol. Genet. 23, 3523–3536 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • S. Nakamura, N. Murayama, T. Noshita, H. Annoura, T. Ohno, Progressive brain dysfunction following intracerebroventricular infusion of beta(1-42)-amyloid peptide. Brain Res. 912, 128–136 (2001)

    Article  CAS  PubMed  Google Scholar 

  • N.B. Nedelsky, J.P. Taylor, Bridging biophysics and neurology: aberrant phase transitions in neurodegenerative disease. Nat. Rev. Neurol. 15, 272–286 (2019)

    Article  PubMed  Google Scholar 

  • M. Newman, S. Nornes, R.N. Martins, M.T. Lardelli, Robust homeostasis of Presenilin1 protein levels by transcript regulation. Neurosci. Lett. 519, 14–19 (2012)

    Article  CAS  PubMed  Google Scholar 

  • G. Njie, S. Kantorovich, G.W. Astary, C. Green, T. Zheng, S.L. Semple-Rowland, D.A. Steindler, M. Sarntinoranont, W.J. Streit, D.R. Borchelt, A preclinical assessment of neural stem cells as delivery vehicles for anti-amyloid therapeutics. PLoS One 7, e34097 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • S. Nornes, M. Newman, G. Verdile, S. Wells, C.L. Stoick-Cooper, B. Tucker, I. Frederich-Sleptsova, R. Martins, M. Lardelli, Interference with splicing of Presenilin transcripts has potent dominant negative effects on Presenilin activity. Hum. Mol. Genet. 17, 402–412 (2008)

    Article  CAS  PubMed  Google Scholar 

  • S. Nornes, M. Newman, S. Wells, G. Verdile, R.N. Martins, M. Lardelli, Independent and cooperative action of Psen2 with Psen1 in zebrafish embryos. Exp. Cell Res. 315, 2791–2801 (2009)

    Article  CAS  PubMed  Google Scholar 

  • H.B. Nygaard, S.M. Strittmatter, Cellular prion protein mediates the toxicity of beta-amyloid oligomers: implications for Alzheimer disease. Arch. Neurol. 66, 1325–1328 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  • A. Ochalek, B. Mihalik, H.X. Avci, A. Chandrasekaran, A. Teglasi, I. Bock, M.L. Giudice, Z. Tancos, K. Molnar, L. Laszlo, et al., Neurons derived from sporadic Alzheimer’s disease iPSCs reveal elevated TAU hyperphosphorylation, increased amyloid levels, and GSK3B activation. Alzheimers Res. Ther. 9, 90 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • S. Oddo, A. Caccamo, J.D. Shepherd, M.P. Murphy, T.E. Golde, R. Kayed, R. Metherate, M.P. Mattson, Y. Akbari, F.M. LaFerla, Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39, 409–421 (2003)

    Article  CAS  PubMed  Google Scholar 

  • M. Ortiz-Virumbrales, C.L. Moreno, I. Kruglikov, P. Marazuela, A. Sproul, S. Jacob, M. Zimmer, D. Paull, B. Zhang, E.E. Schadt, et al., CRISPR/Cas9-Correctable mutation-related molecular and physiological phenotypes in iPSC-derived Alzheimer’s PSEN2 (N141I) neurons. Acta Neuropathol. Commun. 5, 77 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • I.-H. Park, N. Arora, H. Huo, N. Maherali, T. Ahfeldt, A. Shimamura, M.W. Lensch, C. Cowan, K. Hochedlinger, G.Q. Daley, Disease-specific induced pluripotent stem cells. Cell 134, 877–886 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D. Park, S.S. Joo, T.K. Kim, S.H. Lee, H. Kang, H.J. Lee, I. Lim, A. Matsuo, I. Tooyama, Y.B. Kim, et al., Human neural stem cells overexpressing choline acetyltransferase restore cognitive function of kainic acid-induced learning and memory deficit animals. Cell Transplant. 21, 365–371 (2012a)

    Article  CAS  PubMed  Google Scholar 

  • D. Park, H.J. Lee, S.S. Joo, D.K. Bae, G. Yang, Y.H. Yang, I. Lim, A. Matsuo, I. Tooyama, Y.B. Kim, et al., Human neural stem cells over-expressing choline acetyltransferase restore cognition in rat model of cognitive dysfunction. Exp. Neurol. 234, 521–526 (2012b)

    Article  CAS  PubMed  Google Scholar 

  • K.B. Rajan, J. Weuve, L.L. Barnes, R.S. Wilson, D.A. Evans, Prevalence and incidence of clinically diagnosed Alzheimer’s disease dementia from 1994 to 2012 in a population study. Alzheimers Dement 15, 1 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  • K.B. Rank, A.M. Pauley, K. Bhattacharya, Z. Wang, D.B. Evans, T.J. Fleck, J.A. Johnston, S.K. Sharma, Direct interaction of soluble human recombinant tau protein with Abeta 1-42 results in tau aggregation and hyperphosphorylation by tau protein kinase II. FEBS Lett. 514, 263–268 (2002)

    Article  CAS  PubMed  Google Scholar 

  • C. Reitz, Alzheimer’s disease and the amyloid cascade hypothesis: a critical review. Int. J. Alzheimers Dis. 2012, 369808 (2012)

    PubMed  PubMed Central  Google Scholar 

  • J.O. Rinne, D.J. Brooks, M.N. Rossor, N.C. Fox, R. Bullock, W.E. Klunk, C.A. Mathis, K. Blennow, J. Barakos, A.A. Okello, et al., 11C-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer’s disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol. 9, 363–372 (2010)

    Article  CAS  PubMed  Google Scholar 

  • M. Robinson, B.Y. Lee, F.T. Hane, Recent Progress in Alzheimer’s disease research, part 2: genetics and epidemiology. J. Alzheimers Dis. 57, 317–330 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  • J.M. Rubio-Perez, J.M. Morillas-Ruiz, A review: inflammatory process in Alzheimer’s disease, role of cytokines. Sci. World J. 2012, 1 (2012)

    Article  CAS  Google Scholar 

  • B.P. Rutten, N.M. Van der Kolk, S. Schafer, M.A. van Zandvoort, T.A. Bayer, H.W. Steinbusch, C. Schmitz, Age-related loss of synaptophysin immunoreactive presynaptic boutons within the hippocampus of APP751SL, PS1M146L, and APP751SL/PS1M146L transgenic mice. Am. J. Pathol. 167, 161–173 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • T.K. Sang, G.R. Jackson, Drosophila models of neurodegenerative disease. NeuroRx 2, 438–446 (2005)

    Article  PubMed  PubMed Central  Google Scholar 

  • O.A. Shipton, J.R. Leitz, J. Dworzak, C.E. Acton, E.M. Tunbridge, F. Denk, H.N. Dawson, M.P. Vitek, R. Wade-Martins, O. Paulsen, et al., Tau protein is required for amyloid {beta}-induced impairment of hippocampal long-term potentiation. J. Neurosci. 31, 1688–1692 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • E. Sipos, A. Kurunczi, A. Kasza, J. Horvath, K. Felszeghy, S. Laroche, J. Toldi, A. Parducz, B. Penke, Z. Penke, Beta-amyloid pathology in the entorhinal cortex of rats induces memory deficits: implications for Alzheimer’s disease. Neuroscience 147, 28–36 (2007)

    Article  CAS  PubMed  Google Scholar 

  • P. Song, S.W. Pimplikar, Knockdown of amyloid precursor protein in zebrafish causes defects in motor axon outgrowth. PLoS One 7, e34209 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • N. Srivastava, K. Seth, V.K. Khanna, R.W. Ansari, A.K. Agrawal, Long-term functional restoration by neural progenitor cell transplantation in rat model of cognitive dysfunction: co-transplantation with olfactory ensheathing cells for neurotrophic factor support. Int. J. Dev. Neurosci. 27, 103–110 (2009)

    Article  CAS  PubMed  Google Scholar 

  • L. Studer, E. Vera, D. Cornacchia, Programming and reprogramming cellular age in the era of induced pluripotency. Cell Stem Cell 16, 591–600 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • T. Sun, C. Ye, Z. Zhang, J. Wu, H. Huang, Cotransplantation of olfactory ensheathing cells and Schwann cells combined with treadmill training promotes functional recovery in rats with contused spinal cords. Cell Transplant 22(Suppl 1), S27–S38 (2013)

    Article  PubMed  Google Scholar 

  • M. Sundvik, Y.C. Chen, P. Panula, Presenilin1 regulates histamine neuron development and behavior in zebrafish, danio rerio. J. Neurosci. 33, 1589–1597 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, S. Yamanaka, Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007)

    Article  CAS  PubMed  Google Scholar 

  • K. Takamatsu, T. Ikeda, M. Haruta, K. Matsumura, Y. Ogi, N. Nakagata, M. Uchino, Y. Ando, Y. Nishimura, S. Senju, Degradation of amyloid beta by human induced pluripotent stem cell-derived macrophages expressing neprilysin-2. Stem Cell Res. 13, 442–453 (2014)

    Article  CAS  PubMed  Google Scholar 

  • J. Tang, H. Xu, X. Fan, D. Li, D. Rancourt, G. Zhou, Z. Li, L. Yang, Embryonic stem cell-derived neural precursor cells improve memory dysfunction in Abeta(1-40) injured rats. Neurosci. Res. 62, 86–96 (2008)

    Article  CAS  PubMed  Google Scholar 

  • R.E. Tanzi, A brief history of Alzheimer’s disease gene discovery. J. Alzheimers Dis. 33(Suppl 1), S5–S13 (2013)

    PubMed  Google Scholar 

  • P. Taupin, The therapeutic potential of adult neural stem cells. Curr. Opin. Mol. Ther. 8, 225–231 (2006)

    CAS  PubMed  Google Scholar 

  • G. Thinakaran, E.H. Koo, Amyloid precursor protein trafficking, processing, and function. J. Biol. Chem. 283, 29615–29619 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D. Van Dam, P.P. De Deyn, Animal models in the drug discovery pipeline for Alzheimer’s disease. Br. J. Pharmacol. 164, 1285–1300 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • F.G. Vercauteren, S. Clerens, L. Roy, N. Hamel, L. Arckens, F. Vandesande, L. Alhonen, J. Janne, M. Szyf, A.C. Cuello, Early dysregulation of hippocampal proteins in transgenic rats with Alzheimer’s disease-linked mutations in amyloid precursor protein and presenilin 1. Brain Res. Mol. Brain Res. 132, 241–259 (2004)

    Article  CAS  PubMed  Google Scholar 

  • G. Wang, Q. Ao, K. Gong, H. Zuo, Y. Gong, X. Zhang, Synergistic effect of neural stem cells and olfactory ensheathing cells on repair of adult rat spinal cord injury. Cell Transplant. 19, 1325–1337 (2010)

    Article  PubMed  Google Scholar 

  • J.Z. Wang, Y.Y. Xia, I. Grundke-Iqbal, K. Iqbal, Abnormal hyperphosphorylation of tau: sites, regulation, and molecular mechanism of neurofibrillary degeneration. J. Alzheimers Dis. 33(Suppl 1), S123–S139 (2013)

    PubMed  Google Scholar 

  • W. Wang, H. Song, A. Shen, C. Chen, Y. Liu, Y. Dong, F. Han, Differentiated cells derived from fetal neural stem cells improve motor deficits in a rat model of Parkinson’s disease. Transl. Neurosci. Clin. 1, 75–85 (2015)

    Article  Google Scholar 

  • W. Gulisano, D. Maugeri, M.A. Baltrons, M. Fà, A. Amato, A. Palmeri, L. D’Adamio, C. Grassi, D.P. Devanand, L.S. Honig, D. Puzzo, O. Arancio, Role of Amyloid-β and tau proteins in Alzheimer’s disease: confuting the amyloid cascade. J. Alzheimers Dis. 64(s1), S611–S631 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • C.C. Wu, C.C. Lien, W.H. Hou, P.M. Chiang, K.J. Tsai, Gain of BDNF function in engrafted neural stem cells promotes the therapeutic potential for Alzheimer’s disease. Sci. Rep. 6, 27358 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • T. Yagi, D. Ito, Y. Okada, W. Akamatsu, Y. Nihei, T. Yoshizaki, S. Yamanaka, H. Okano, N. Suzuki, Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum. Mol. Genet. 20, 4530–4539 (2011)

    Article  CAS  PubMed  Google Scholar 

  • M. Yamada, T. Chiba, J. Sasabe, M. Nawa, H. Tajima, T. Niikura, K. Terashita, S. Aiso, Y. Kita, M. Matsuoka, et al., Implanted cannula-mediated repetitive administration of Abeta25-35 into the mouse cerebral ventricle effectively impairs spatial working memory. Behav. Brain Res. 164, 139–146 (2005)

    Article  CAS  PubMed  Google Scholar 

  • T.R. Yamasaki, M. Blurton-Jones, D.A. Morrissette, M. Kitazawa, S. Oddo, F.M. LaFerla, Neural stem cells improve memory in an inducible mouse model of neuronal loss. J. Neurosci. 27, 11925–11933 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Y. Yan, T. Ma, K. Gong, Q. Ao, X. Zhang, Y. Gong, Adipose-derived mesenchymal stem cell transplantation promotes adult neurogenesis in the brains of Alzheimer’s disease mice. Neural Regen. Res. 9, 798–805 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • H. Yang, Z. Xie, L. Wei, J. Bi, Systemic transplantation of human umbilical cord derived mesenchymal stem cells-educated T regulatory cells improved the impaired cognition in AbetaPPswe/PS1dE9 transgenic mice. PLoS One 8, e69129 (2013a)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • H. Yang, Z. Xie, L. Wei, S. Yang, Z. Zhu, P. Wang, C. Zhao, J. Bi, Human umbilical cord mesenchymal stem cell-derived neuron-like cells rescue memory deficits and reduce amyloid-beta deposition in an AbetaPP/PS1 transgenic mouse model. Stem Cell Res Ther 4, 76 (2013b)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • J. Yu, K. Hu, K. Smuga-Otto, S. Tian, R. Stewart, I.I. Slukvin, J.A. Thomson, Human induced pluripotent stem cells free of vector and transgene sequences. Science 324, 797–801 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • W. Yue, Y. Li, T. Zhang, M. Jiang, Y. Qian, M. Zhang, N. Sheng, S. Feng, K. Tang, X. Yu, et al., ESC-derived basal forebrain cholinergic neurons ameliorate the cognitive symptoms associated with Alzheimer’s disease in mouse models. Stem Cell Rep 5, 776–790 (2015)

    Article  CAS  Google Scholar 

  • W. Zhang, P.J. Wang, H.Y. Sha, J. Ni, M.H. Li, G.J. Gu, Neural stem cell transplants improve cognitive function without altering amyloid pathology in an APP/PS1 double transgenic model of Alzheimer’s disease. Mol. Neurobiol. 50, 423–437 (2014)

    Article  CAS  PubMed  Google Scholar 

  • T. Zhou, C. Benda, S. Dunzinger, Y. Huang, J.C. Ho, J. Yang, Y. Wang, Y. Zhang, Q. Zhuang, Y. Li, et al., Generation of human induced pluripotent stem cells from urine samples. Nat. Protoc. 7, 2080–2089 (2012)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by National Natural Science Foundation of China (NSFC 81571241), Department of Science and technology of Shandong Province, China (2017GSF18104), and Basic Research fund from Natural Science Foundation of Shandong Province, China (ZR2019ZD39). We also thank Qingfa Chen, Chuanfei Wei, and Wei Wang in my lab for their technically editing the references and making figures of the manuscript.

Disclosure

The authors have no conflict of interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabin Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Han, F., Bi, J., Qiao, L., Arancio, O. (2020). Stem Cell Therapy for Alzheimer’s Disease. In: Han, F., Lu, P.(. (eds) Stem Cell-based Therapy for Neurodegenerative Diseases. Advances in Experimental Medicine and Biology, vol 1266. Springer, Singapore. https://doi.org/10.1007/978-981-15-4370-8_4

Download citation

Publish with us

Policies and ethics