Nath A. Association of herpes viral infections, antiherpetic therapy, and dementia: real or alternative fact? Neurotherapeutics. 2018; 15: 415–416.
Article
PubMed
PubMed Central
Google Scholar
Tzeng N-S, Chung CH, Lin FH et al. Antiherpetic medications and reduced risk of dementia in patients with herpes simplex virus infections – a nationwide population-based cohort study in Taiwan. Neurotherapeutics 2018; 15: 417–429.
Article
PubMed
PubMed Central
Google Scholar
Itzhaki RF, Lathe R. Herpes viruses and senile dementia: first population evidence for a causal link. J. Alzheimers Dis. 2018; 64: 363–366.
Article
PubMed
Google Scholar
Itzhaki RF, Lin WR, Shang D, Wilcock GK, Faragher B, Jamieson GA. Herpes simplex virus type 1 in brain and risk of Alzheimer’s disease. Lancet 1997; 349: 241–244.
Article
CAS
PubMed
Google Scholar
Burgos JS, Ramirez C, Sastre I, Bullido MJ, Valdivieso F. ApoE4 is more efficient than E3 in brain access by herpes simplex virus type 1. Neuroreport 2003; 14: 1825–1827.
Article
CAS
PubMed
Google Scholar
Jayasuriya AN, Itzhaki RF, Wozniak MA et al. Apolipoprotein E-epsilon 4 and recurrent genital herpes in individuals co-infected with herpes simplex virus type 2 and HIV. Sex.Transm.Infect. 2008; 84: 516–517.
Article
CAS
PubMed
Google Scholar
Koelle DM, Magaret A, Warren T, Schellenberg GD, Wald A. APOE genotype is associated with oral herpetic lesions but not genital or oral herpes simplex virus shedding. Sex.Transm.Infect. 2010; 86: 202–206.
Article
PubMed
Google Scholar
Gerard HC, Wildt KL, Whittum-Hudson JA, Lai Z, Ager J, Hudson AP. The load of Chlamydia pneumoniae in the Alzheimer’s brain varies with APOE genotype. Microb.Pathog. 2005; 39: 19–26.
Article
CAS
PubMed
Google Scholar
Gerard HC, Wang GF, Balin BJ, Schumacher HR, Hudson AP. Frequency of apolipoprotein E (APOE) allele types in patients with Chlamydia-associated arthritis and other arthritides. Microb.Pathog. 1999; 26: 35–43.
Article
CAS
PubMed
Google Scholar
Burt TD, Agan BK, Marconi VC et al. Apolipoprotein (apo) E4 enhances HIV-1 cell entry in vitro, and the APOE epsilon4/epsilon4 genotype accelerates HIV disease progression. Proc.Natl.Acad.Sci U.S.A 2008; 105: 8718–8723.
Article
PubMed
PubMed Central
Google Scholar
Rathore N, Ramani SR, Pantua H et al. Paired immunoglobulin-like type 2 receptor alpha G78R variant alters ligand binding and confers protection to Alzheimer’s disease. PLoS Genet. 2018; 14: e1007427
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsai MC, Cheng WL, Sheu JJ et al. Increased risk of dementia following herpes zoster ophthalmicus. PLoS.One. 2017; 12: e0188490.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen VC, Wu SI, Huang KY et al. Herpes zoster and dementia: a nationwide population-based cohort study. J.Clin.Psychiatry. 2018; 79.
Tzeng NS, Chung CH, Yeh CB et al. Are chronic periodontitis and gingivitis associated with dementia? A nationwide, retrospective, matched-cohort study in Taiwan. Neuroepidemiology. 2016; 47: 82–93.
Article
PubMed
Google Scholar
Lee YT, Lee HC, Hu CJ et al. Periodontitis as a modifiable risk factor for dementia: a nationwide population-based cohort study. J.Am.Geriatr.Soc. 2017; 65: 301–305.
Article
PubMed
Google Scholar
Chen CK, Wu YT, Chang YC. Association between chronic periodontitis and the risk of Alzheimer’s disease: a retrospective, population-based, matched-cohort study. Alzheimers.Res.Ther. 2017; 9: 56.
Article
PubMed
PubMed Central
Google Scholar
Miklossy J. Alzheimer’s disease – a neurospirochetosis Analysis of the evidence following Koch’s and Hill’s criteria. J.Neuroinflammation. 2011; 8: 90.
Article
PubMed
PubMed Central
Google Scholar
Gerard HC, Dreses-Werringloer U, Wildt KS et al. Chlamydophila (Chlamydia) pneumoniae in the Alzheimer’s brain. FEMS Immunol.Med.Microbiol. 2006; 48: 355–366.
Article
CAS
PubMed
Google Scholar
Xu F, Schillinger JA, Sternberg MR et al. Seroprevalence and coinfection with herpes simplex virus type 1 and type 2 in the United States, 1988-1994. Journal of Infectious Diseases 2002; 185: 1019–1024.
Article
PubMed
Google Scholar
Pebody RG, Andrews N, Brown D et al. The seroepidemiology of herpes simplex virus type 1 and 2 in Europe. Sex.Transm.Infect. 2004; 80: 185–191.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen JH, Huang KY, Chao-Yu C, Chen CJ, Lin TY, Huang YC. Seroprevalence of herpes simplex virus type 1 and 2 in Taiwan and risk factor analysis, 2007. PLoS.One. 2015; 10: e0134178.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nicoll MP, Proenca JT, Efstathiou S. The molecular basis of herpes simplex virus latency. FEMS.Microbiol.Rev. 2012; 36: 684–705.
Article
CAS
PubMed
Google Scholar
Grinde B. Herpesviruses: latency and reactivation – viral strategies and host response. J.Oral.Microbiol. 2013; 5: 22766.
Article
CAS
Google Scholar
Baringer JR, Swoveland P. Recovery of herpes-simplex virus from human trigeminal ganglions. N.Engl.J.Med. 1973; 288: 648–650.
Article
CAS
PubMed
Google Scholar
Croen KD, Ostrove JM, Dragovic LJ, Smialek JE, Straus SE. Latent herpes simplex virus in human trigeminal ganglia. Detection of an immediate early gene ‘anti-sense’ transcript by in situ hybridization. N.Engl.J.Med. 1987; 317: 1427–1432.
Article
CAS
PubMed
Google Scholar
Furuta Y, Takasu T, Sato KC, Fukuda S, Inuyama Y, Nagashima K. Latent herpes simplex virus type 1 in human geniculate ganglia. Acta Neuropathol. 1992; 84: 39–44.
Article
CAS
PubMed
Google Scholar
Theil D, Arbusow V, Derfuss T et al. Prevalence of HSV-1 LAT in human trigeminal, geniculate, and vestibular ganglia and its implication for cranial nerve syndromes. Brain Pathol. 2001; 11: 408–413.
Article
CAS
PubMed
Google Scholar
Lathe R, Haas JG. Distribution of cellular HSV-1 receptor expression in human brain. J.Neurovirol. 2017; 23: 376–384.
Article
CAS
PubMed
Google Scholar
Jamieson GA, Maitland NJ, Wilcock GK, Craske J, Itzhaki RF. Latent herpes simplex virus type 1 in normal and Alzheimer’s disease brains. J.Med.Virol. 1991; 33: 224–227.
Article
CAS
PubMed
Google Scholar
Jamieson GA, Maitland NJ, Wilcock GK, Yates CM, Itzhaki RF. Herpes simplex virus type 1 DNA is present in specific regions of brain from aged people with and without senile dementia of the Alzheimer type. J.Pathol. 1992; 167: 365–368.
Article
CAS
PubMed
Google Scholar
Readhead B, Haure-Mirande JV, Funk CC et al. Multiscale analysis of independent Alzheimer’s cohorts finds disruption of molecular, genetic, and clinical networks by human herpesvirus. Neuron 2018; 99: 64–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wozniak MA, Itzhaki RF, Shipley SJ, Dobson CB. Herpes simplex virus infection causes cellular beta-amyloid accumulation and secretase upregulation. Neuroscience Letters 2007; 429: 95–100.
Article
CAS
PubMed
Google Scholar
Soscia SJ, Kirby JE, Washicosky KJ et al. The Alzheimer’s disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS One 2010; 5: e9505.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moir RD, Lathe R, Tanzi RE. The antimicrobial protection hypothesis of Alzheimer’s disease. Alzheimer’s and Dementia 2018. Published online October 9, 2018. https://doi.org/10.1016/j.jalz.2018.06.3040
Bourgade K, Le PA, Bocti C et al. Protective effect of amyloid-beta peptides against herpes simplex virus-1 infection in a neuronal cell culture model. J. Alzheimers Dis. 2016; 50: 1227–1241.
Article
CAS
PubMed
Google Scholar
Eimer WA, Kumar DKV, Shanmugam NKN et al. Alzheimer’s disease-associated beta-amyloid is rapidly seeded by herpesviridae to protect against brain infection. Neuron 2018; 99: 56–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haas JG, Lathe R. Microbes and Alzheimer’s disease: new findings call for a paradigm change. Trends.Neurosci. 2018; 41: 570–573.
Article
CAS
PubMed
Google Scholar
Jamieson GA, Maitland NJ, Craske J, Wilcock GK, Itzhaki RF. Detection of herpes simplex virus type 1 DNA sequences in normal and Alzheimer’s disease brain using polymerase chain reaction. Biochem.Soc.Trans. 1991; 19: 122S.
Article
CAS
PubMed
Google Scholar
Franceschi C, Salvioli S, Garagnani P, de Eguileor M, Monti D, Capri M. Immunobiography and the heterogeneity of immune responses in the elderly: a focus on inflammaging and trained immunity. Front.Immunol. 2017; 8: 982.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stowe RP, Kozlova EV, Yetman DL, Walling DM, Goodwin JS, Glaser R. Chronic herpesvirus reactivation occurs in aging. Exp.Gerontol. 2007; 42: 563–570.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stowe RP, Peek MK, Cutchin MP, Goodwin JS. Reactivation of herpes simplex virus type 1 is associated with cytomegalovirus and age. J.Med.Virol. 2012; 84: 1797–1802.
Article
PubMed
PubMed Central
Google Scholar
Itzhaki RF. Herpes and Alzheimer’s disease: subversion in the central nervous system and how it might be halted. J.Alzheimers.Dis. 2016; 54: 1273–1281.
Article
CAS
PubMed
Google Scholar
Darby G, Larder BA, Bastow KF, Field HJ. Sensitivity of viruses to phosphorylated 9-(2-hydroxyethoxymethyl)guanine revealed in TK-transformed cells. Journal of General Virology 1980; 48: 451–454.
Article
CAS
PubMed
Google Scholar
Collins P. The spectrum of antiviral activities of acyclovir in vitro and in vivo. J. Antimicrob.Chemother. 1983; 12 Suppl B: 19–27.
Article
CAS
PubMed
Google Scholar
Ying B, Tollefson AE, Spencer JF et al. Ganciclovir inhibits human adenovirus replication and pathogenicity in permissive immunosuppressed Syrian hamsters. Antimicrob.Agents.Chemother. 2014; 58: 7171–7181.
McMahon MA, Siliciano JD, Lai J et al. The antiherpetic drug acyclovir inhibits HIV replication and selects the V75I reverse transcriptase multidrug resistance mutation. J.Biol.Chem. 2008; 283: 31289–31293.
Article
CAS
PubMed
PubMed Central
Google Scholar
Celum C, Wald A, Lingappa JR et al. Acyclovir and transmission of HIV-1 from persons infected with HIV-1 and HSV-2. N.Engl.J.Med. 2010; 362: 427–439.
Article
CAS
PubMed
PubMed Central
Google Scholar