Humayun MS, Weiland JD, Fujii GY, et al. Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Res 2003;43:2573-2581.
PubMed
Google Scholar
Mahadevappa M, Weiland JD, Yanai D, Fine I, Greenberg RJ, Humayun MS. Perceptual thresholds and electrode impedance in three retinal prosthesis subjects. IEEE Trans Neural Syst Rehabil Eng 2005;13:201-206. doi:10.1109/TNSRE.2005.848687.
PubMed
Google Scholar
Weiland JD, Cho AK, Humayun MS. Retinal prostheses: current clinical results and future needs. Ophthalmology 2011;118:2227-2237.
PubMed
Google Scholar
Yanai D, Weiland JD, Mahadevappa M, Greenberg RJ, Fine I, Humayun MS. Visual performance using a retinal prosthesis in three subjects with retinitis pigmentosa. Am J Ophthalmol 2007;143:820-827.
PubMed
Google Scholar
Makhdoum MJ, Snik AF, van den Broek P. Cochlear implantation: a review of the literature and the Nijmegen results. J Laryngol Otol 1997;111:1008-1017.
CAS
PubMed
Google Scholar
Snik AF, Mylanus EA, Cremers CW. Implantable hearing devices for sensorineural hearing loss: a review of the audiometric data. Clin Otolaryngol Allied Sci 1998;23:414-419.
CAS
PubMed
Google Scholar
Viczian AS. Advances in retinal stem cell biology. J Ophthal Vis Res 2013;8:147-159.
Google Scholar
Viczian AS, Solessio EC, Lyou Y, Zuber ME. Generation of functional eyes from pluripotent cells. PLoS Biol 2009;7:e1000174.
PubMed Central
PubMed
Google Scholar
Pai VP, Aw S, Shomrat T, Lemire JM, Levin M. Transmembrane voltage potential controls embryonic eye patterning in Xenopus laevis. Development 2012;139:313-323.
PubMed Central
CAS
PubMed
Google Scholar
Erskine L, Herrera E. The retinal ganglion cell axon’s journey: insights into molecular mechanisms of axon guidance. Dev Biol 2007;308:1-14.
CAS
PubMed
Google Scholar
Erskine L, Reijntjes S, Pratt T, et al. VEGF signaling through neuropilin 1 guides commissural axon crossing at the optic chiasm. Neuron 2011;70:951-965.
PubMed Central
CAS
PubMed
Google Scholar
Huber AB, Kolodkin AL, Ginty DD, Cloutier JF. Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance. Annu Rev Neurosci 2003;26:509-563.
CAS
PubMed
Google Scholar
Petros TJ, Rebsam A, Mason CA. Retinal axon growth at the optic chiasm: To cross or not to cross. Annu Rev Neurosci 2008;31:295-315.
CAS
PubMed
Google Scholar
Godement P, Wang LC, Mason CA. Retinal axon divergence in the optic chiasm—dynamics of growth cone behavior at the midline. J Neurosci 1994;14:7024-7039.
CAS
PubMed
Google Scholar
Constantine-Paton M, Capranica RR. Axonal guidance of developing optic nerves in the frog. II. electrophysiological studies of the projection from transplanted eye primordia. J Comp Neurol 1976;170:33-51.
CAS
PubMed
Google Scholar
Constantine-Paton M, Capranica RR. Axonal guidance of developing optic nerves in the frog. I. Anatomy of the projection from transplanted eye primordia. J Comp Neurol 1976;170:17-31.
CAS
PubMed
Google Scholar
Constantine-Paton M, Caprianica RR. Central projection of optic tract from translocated eyes in the leopard frog (Rana pipiens). Science 1975;189:480-482.
CAS
PubMed
Google Scholar
Katz MJ, Lasek RJ. Eyes transplanted to tadpole tails send axons rostrally in 2 spinal-cord tracts. Science 1978;199:202-204.
CAS
PubMed
Google Scholar
Koo H, Graziadei PPC. Eye primordium transplantation in Xenopus embryo. Anat Embryol 1995;191:155-170.
CAS
PubMed
Google Scholar
Ashery-Padan R, Gruss P. Pax6 lights-up the way for eye development. Curr Opin Cell Biol 2001;13:706-714.
CAS
PubMed
Google Scholar
Bailey TJ, El-Hodiri H, Zhang L, Shah R, Mathers PH, Jamrich M. Regulation of vertebrate eye development by Rx genes. Int J Dev Biol 2004;48:761-770.
CAS
PubMed
Google Scholar
Chow RL, Altmann CR, Lang RA, Hemmati-Brivanlou A. Pax6 induces ectopic eyes in a vertebrate. Development 1999;126:4213-4222.
CAS
PubMed
Google Scholar
Kenyon KL, Moody SA, Jamrich M. A novel fork head gene mediates early steps during Xenopus lens formation. Development 1999;126:5107-5116.
CAS
PubMed
Google Scholar
Kenyon KL, Zaghloul N, Moody SA. Transcription factors of the anterior neural plate alter cell movements of epidermal progenitors to specify a retinal fate. Dev Biol 2001;240:77-91.
CAS
PubMed
Google Scholar
Ohuchi H, Tomonari S, Itoh H, Mikawa T, Noji S. Identification of chick rax/rx genes with overlapping patterns of expression during early eye and brain development. Mech Dev 1999;85:193-195.
CAS
PubMed
Google Scholar
Giorgi PP, Vanderloos H. Axons from eyes grafted in Xenopus can grow into spinal-cord and reach optic tectum. Nature 1978;275:746-748.
CAS
PubMed
Google Scholar
Blackiston DJ, Levin M. Ectopic eyes outside the head in Xenopus tadpoles provide sensory data for light-mediated learning. J Exp Biol 2013;216:1031-1040.
PubMed Central
PubMed
Google Scholar
Blackiston D, Shomrat T, Nicolas CL, Granata C, Levin M. A second-generation device for automated training and quantitative behavior analyses of molecularly-tractable model organisms. PLoS One 2010;5:e14370.
PubMed Central
PubMed
Google Scholar
Blackiston DJ, Levin M. Aversive training methods in Xenopus laevis: General principles. Cold Spring Harb Protoc 2012;2012.
Borgens RB. What is the role of naturally produced electric current in vertebrate regeneration and healing. Int Rev Cytol 1982;76:245-298.
CAS
PubMed
Google Scholar
Nuccitelli R. A role for endogenous electric fields in wound healing. Curr Top Dev Biol 2003;58:1-26.
PubMed
Google Scholar
Pullar CE. The physiology of bioelectricity in development, tissue regeneration, and cancer. Biological effects of electromagnetics series. CRC Press, Boca Raton, FL, 2011.
Google Scholar
McCaig CD, Song B, Rajnicek AM. Electrical dimensions in cell science. J Cell Sci 2009;122:4267-4276.
CAS
PubMed
Google Scholar
Patel NB, Poo MM. Perturbation of the direction of neurite growth by pulsed and focal electric fields. J Neurosci 1984;4:2939-2947.
CAS
PubMed
Google Scholar
Patel N, Poo MM. Orientation of neurite growth by extracellular electric fields. J Neurosci 1982;2:483-496.
CAS
PubMed
Google Scholar
Yamashita M. Electric axon guidance in embryonic retina: galvanotropism revisited. Biochem Biophys Res Commun 2013;431:280-283.
CAS
PubMed
Google Scholar
Cao L, Wei D, Reid B, et al. Endogenous electric currents might guide rostral migration of neuroblasts. EMBO Rep 2013;14:184-190.
PubMed Central
CAS
PubMed
Google Scholar
Meng X, Arocena M, Penninger J, Gage FH, Zhao M, Song B. PI3K mediated electrotaxis of embryonic and adult neural progenitor cells in the presence of growth factors. Exp Neurol 2011;227:210-217.
CAS
PubMed
Google Scholar
Yao L, Pandit A, Yao S, McCaig CD. Electric field-guided neuron migration: a novel approach in neurogenesis. Tissue Eng Part B Rev 2011;17:143-153.
PubMed
Google Scholar
Yao L, Shanley L, McCaig C, Zhao M. Small applied electric fields guide migration of hippocampal neurons. J Cell Physiol 2008;216:527-535.
CAS
PubMed
Google Scholar
Rajnicek AM, Foubister LE, McCaig CD. Prioritising guidance cues: directional migration induced by substratum contours and electrical gradients is controlled by a rho/cdc42 switch. Dev Biol 2007;312:448-460.
CAS
PubMed
Google Scholar
McCaig CD, Rajnicek AM, Song B, Zhao M. Has electrical growth cone guidance found its potential? Trends Neurosci 2002;25:354-359.
CAS
PubMed
Google Scholar
Borgens RB, Blight AR, Murphy DJ, Stewart L. Transected dorsal column axons within the guinea pig spinal cord regenerate in the presence of an applied electric field. J Comp Neurol 1986;250:168-180.
CAS
PubMed
Google Scholar
Pan L, Cirillo J, Ben Borgens R. Neuronal responses to an asymmetrical alternating current field can mimic those produced by an imposed direct current field in vitro. J Neurosci Res 2012;90:1522-1532.
CAS
PubMed
Google Scholar
Pan L, Borgens RB. Strict perpendicular orientation of neural crest-derived neurons in vitro is dependent on an extracellular gradient of voltage. J Neurosci Res 2012;90:1335-1346.
CAS
PubMed
Google Scholar
Pan L, Borgens RB. Perpendicular organization of sympathetic neurons within a required physiological voltage. Exp Neurol 2010;222:161-164.
PubMed
Google Scholar
Shapiro S, Borgens R, Pascuzzi R, et al. Oscillating field stimulation for complete spinal cord injury in humans: a phase 1 trial. J Neurosurg Spine 2005;2:3-10.
PubMed
Google Scholar
Moriarty LJ, Borgens RB. An oscillating extracellular voltage gradient reduces the density and influences the orientation of astrocytes in injured mammalian spinal cord. J Neurocytol 2001;30:45-57.
CAS
PubMed
Google Scholar
Sundelacruz S, Li C, Choi YJ, Levin M, Kaplan DL. Bioelectric modulation of wound healing in a 3D in vitro model of tissue-engineered bone. Biomaterials 2013;34:6695-6705.
PubMed Central
CAS
PubMed
Google Scholar
Sundelacruz S, Levin M, Kaplan DL. Depolarization alters phenotype, maintains plasticity of predifferentiated mesenchymal stem cells. Tissue engineering Part A 2013;19:1889-1908.
PubMed Central
CAS
PubMed
Google Scholar
Pratt KG, Khakhalin AS. Modeling human neurodevelopmental disorders in the Xenopus tadpole: from mechanisms to therapeutic targets. Dis Model Mech 2013;6:1057-1065.
PubMed Central
PubMed
Google Scholar
Sinha G. Charged by GSK investment, battery of electroceuticals advance. Nat Med 2013;19:654.
CAS
PubMed
Google Scholar
Famm K, Litt B, Tracey KJ, Boyden ES, Slaoui M. Drug discovery: A jump-start for electroceuticals. Nature 2013;496:159-161.
PubMed Central
CAS
PubMed
Google Scholar
Sive HL, Grainger RM, Harland RM. Early development of Xenopus laevis. Cold Spring Harbor Laboratory Press, New York, 2000.
Google Scholar
Nieuwkoop PD, Faber J. Normal table of Xenopus laevis (Daudin). North-Holland Publishing Company, Amsterdam, 1967.
Google Scholar
Blackiston D, Adams DS, Lemire JM, Lobikin M, Levin M. Transmembrane potential of GlyCl-expressing instructor cells induces a neoplastic-like conversion of melanocytes via a serotonergic pathway. Dis Model Mech 2011;4:67-85.
PubMed Central
CAS
PubMed
Google Scholar
Waldner C, Roose M, Ryffel GU. Red fluorescent Xenopus laevis: a new tool for grafting analysis. BMC Develop Biol 2009;9:37.
Google Scholar
Aw S, Adams DS, Qiu D, Levin M. H,K-ATPase protein localization and Kir4.1 function reveal concordance of three axes during early determination of left-right asymmetry. Mech Dev 2008;125:353-372.
PubMed Central
CAS
PubMed
Google Scholar
Levin M, Mercola M. Expression of connexin 30 in Xenopus embryos and its involvement in hatching gland function. Dev Dyn 2000;219:96-101.
CAS
PubMed
Google Scholar
Paul DL, Yu K, Bruzzone R, Gimlich RL, Goodenough DA. Expression of a dominant negative inhibitor of intercellular communication in the early Xenopus embryo causes delamination and extrusion of cells. Development 1995;121:371-381.
CAS
PubMed
Google Scholar
Blackiston D, Vandenberg LN, Levin M. High-throughput Xenopus laevis immunohistochemistry using agarose sections. Cold Spring Harb Protoc 2010;2010:pdb prot5532.
Perathoner S, Daane JM, Henrion U, et al. Bioelectric signaling regulates size in zebrafish fins. PLoS Genet 2014;10:e1004080.
PubMed Central
PubMed
Google Scholar
Ori M, De Lucchini S, Marras G, Nardi I. Unraveling new roles for serotonin receptor 2B in development: key findings from Xenopus. Int J Dev Biol 2013;57:707-714.
CAS
PubMed
Google Scholar
Lobikin M, Chernet B, Lobo D, Levin M. Resting potential, oncogene-induced tumorigenesis, and metastasis: the bioelectric basis of cancer in vivo. Phys Biol 2012;9:065002.
PubMed Central
PubMed
Google Scholar
Ramakers GJ, Winter J, Hoogland TM, et al. Depolarization stimulates lamellipodia formation and axonal but not dendritic branching in cultured rat cerebral cortex neurons. Brain research Develop Brain Res 1998;108:205-216.
CAS
Google Scholar
Eddins D, Cerutti D, Williams P, Linney E, Levin ED. Zebrafish provide a sensitive model of persisting neurobehavioral effects of developmental chlorpyrifos exposure: comparison with nicotine and pilocarpine effects and relationship to dopamine deficits. Neurotoxicol Teratol 2010;32:99-108.
PubMed Central
CAS
PubMed
Google Scholar
Tseng AS, Beane WS, Lemire JM, Masi A, Levin M. Induction of vertebrate regeneration by a transient sodium current. J Neurosci 2010;30:13192-13200.
PubMed Central
CAS
PubMed
Google Scholar
Adams DS, Levin M. Endogenous voltage gradients as mediators of cell–cell communication: strategies for investigating bioelectrical signals during pattern formation. Cell Tissue Res 2013;352:95-122.
CAS
PubMed
Google Scholar
Mohr C, Gorner P. Innervation patterns of the lateral line stitches of the clawed frog, Xenopus laevis, and their reorganization during metamorphosis. Brain Behav Evolut 1996;48:55-69.
CAS
Google Scholar
Lemberger L, Rowe H, Carmichael R, et al. Fluoxetine, a selective serotonin uptake inhibitor. Clin Pharmacol Ther 1978;23:421-429.
CAS
PubMed
Google Scholar
Cao Y, Mager S, Lester HA. H+ permeation and pH regulation at a mammalian serotonin transporter. J Neurosci 1997;17:2257-2266.
CAS
PubMed
Google Scholar
Conners DE, Rogers ED, Armbrust KL, Kwon JW, Black MC. Growth and development of tadpoles (Xenopus laevis) exposed to selective serotonin reuptake inhibitors, fluoxetine and sertraline, throughout metamorphosis. Environ Toxicol Chem 2009;28:2671-2676.
CAS
PubMed
Google Scholar
Quick MW. Regulating the conducting states of a mammalian serotonin transporter. Neuron 2003;40:537-549.
CAS
PubMed
Google Scholar
Berg C, Backstrom T, Winberg S, Lindberg R, Brandt I. Developmental exposure to fluoxetine modulates the serotonin system in hypothalamus. PloS One 2013;8:e55053.
PubMed Central
CAS
PubMed
Google Scholar
Wang HW, Li CZ, Yang ZF, Zheng YQ, Zhang Y, Liu YM. Electrophysiological effect of fluoxetine on Xenopus oocytes heterologously expressing human serotonin transporter. Acta Pharmacol Sin 2006;27:289-293.
PubMed
Google Scholar
Baez M, Kursar JD, Helton LA, Wainscott DB, Nelson DL. Molecular biology of serotonin receptors. Obes Res 1995;3(Suppl. 4):441S-447S.
CAS
PubMed
Google Scholar
Caudron F, Barral Y. A super-assembly of Whi3 encodes memory of deceptive encounters by single cells during yeast courtship. Cell 2013;155:1244-1257.
CAS
PubMed
Google Scholar
Kim HJ, Kim W, Kong SY. Antidepressants for neuro-regeneration: from depression to Alzheimer’s disease. Arch Pharm Res 2013;36:1279-1290.
CAS
PubMed
Google Scholar
Hou M, Li Y, Paul DL. A novel, highly sensitive method for assessing gap junctional coupling. J Neurosci Meth 2013;220:18-23.
CAS
Google Scholar
Gairhe S, Bauer NN, Gebb SA, McMurtry IF. Serotonin passes through myoendothelial gap junctions to promote pulmonary arterial smooth muscle cell differentiation. Am J Physiol Lung Cell Mol Physiol 2012;303:L767-L777.
CAS
PubMed
Google Scholar
Vandenberg LN, Levin M. Polarity proteins are required for left-right axis orientation and twin-twin instruction. Genesis 2012;50:219-234.
PubMed Central
CAS
PubMed
Google Scholar
Carneiro K, Donnet C, Rejtar T, et al. Histone deacetylase activity is necessary for left-right patterning during vertebrate development. BMC Dev Biol 2011;11:29.
PubMed Central
CAS
PubMed
Google Scholar
Fukumoto T, Kema IP, Levin M. Serotonin signaling is a very early step in patterning of the left-right axis in chick and frog embryos. Curr Biol 2005;15:794-803.
CAS
PubMed
Google Scholar
Adams DS, Robinson KR, Fukumoto T, et al. Early, H+-V-ATPase-dependent proton flux is necessary for consistent left-right patterning of non-mammalian vertebrates. Development 2006;133:1657-1671.
PubMed Central
CAS
PubMed
Google Scholar
Vandenberg LN, Lemire JM, Levin M. Serotonin has early, cilia-independent roles in Xenopus left-right patterning. Dis Model Mech 2013;6:261-268.
PubMed Central
CAS
PubMed
Google Scholar
Oviedo NJ, Morokuma J, Walentek P, et al. Long-range neural and gap junction protein-mediated cues control polarity during planarian regeneration. Dev Biol 2010;339:188-199.
PubMed Central
CAS
PubMed
Google Scholar
Levin M. Gap junctional communication in morphogenesis. Prog Biophys Mol Biol 2007;94:186-206.
PubMed Central
CAS
PubMed
Google Scholar
Nogi T, Levin M. Characterization of innexin gene expression and functional roles of gap-junctional communication in planarian regeneration. Dev Biol 2005;287:314-335.
CAS
PubMed
Google Scholar
Hoptak-Solga AD, Klein KA, DeRosa AM, White TW, Iovine MK. Zebrafish short fin mutations in connexin43 lead to aberrant gap junctional intercellular communication. FEBS Lett 2007;581:3297-3302.
PubMed Central
CAS
PubMed
Google Scholar
Iovine MK, Higgins EP, Hindes A, Coblitz B, Johnson SL. Mutations in connexin43 (GJA1) perturb bone growth in zebrafish fins. Dev Biol 2005;278:208-219.
CAS
PubMed
Google Scholar
Sims K, Jr., Eble DM, Iovine MK. Connexin43 regulates joint location in zebrafish fins. Dev Biol 2009;327:410-418.
PubMed Central
CAS
PubMed
Google Scholar
de Boer TP, Kok B, Roel G, et al. Cloning, embryonic expression, and functional characterization of two novel connexins from Xenopus laevis. Biochem Biophys Res Commun 2006;349:855-862.
PubMed
Google Scholar
de Boer TP, van der Heyden MA. Xenopus connexins: how frogs bridge the gap. Differentiation 2005;73:330-340.
PubMed
Google Scholar
Landesman Y, Postma FR, Goodenough DA, Paul DL. Multiple connexins contribute to intercellular communication in the Xenopus embryo. J Cell Sci 2003;116:29-38.
CAS
PubMed
Google Scholar
Li R, Mather J. Lindane, an inhibitor of gap junction formation, abolishes oocyte directed follicle organizing activity in vitro. Endocrinology 1997;138:4477-4480.
CAS
PubMed
Google Scholar
Guan X, Bonney WJ, Ruch RJ. Changes in gap junction permeability, gap junction number, and connexin43 expression in lindane-treated rat liver epithelial cells. Toxicol Appl Pharmacol 1995;130:79-86.
CAS
PubMed
Google Scholar
Ruch RJ, Klaunig JE, Pereira MA. Inhibition of intercellular communication between mouse hepatocytes by tumor promoters. Toxicol Appl Pharmacol 1987;87:111-120.
CAS
PubMed
Google Scholar
Kwak BR, Pepper MS, Gros DB, Meda P. Inhibition of endothelial wound repair by dominant negative connexin inhibitors. Mol Biol Cell 2001;12:831-845.
PubMed Central
CAS
PubMed
Google Scholar
Levin M, Mercola M. Gap junctions are involved in the early generation of left–right asymmetry. Dev Biol 1998;203:90-105.
CAS
PubMed
Google Scholar
Chernet BT, Levin M. Transmembrane voltage potential is an essential cellular parameter for the detection and control of tumor development in a Xenopus model. Dise Model Mechan 2013;6:595-607.
CAS
Google Scholar
Levin M, Thorlin T, Robinson KR, Nogi T, Mercola M. Asymmetries in H+/K+-ATPase and cell membrane potentials comprise a very early step in left–right patterning. Cell 2002;111:77-89.
CAS
PubMed
Google Scholar
Beane WS, Morokuma J, Adams DS, Levin M. A Chemical genetics approach reveals H,K-ATPase-mediated membrane voltage is required for planarian head regeneration. Chem Biol 2011;18:77-89.
PubMed Central
CAS
PubMed
Google Scholar
Adams DS, Masi A, Levin M. H+ pump-dependent changes in membrane voltage are an early mechanism necessary and sufficient to induce Xenopus tail regeneration. Development 2007;134:1323-1335.
CAS
PubMed
Google Scholar
Adams DS, Tseng AS, Levin M. Light-activation of the archaerhodopsin H(+)-pump reverses age-dependent loss of vertebrate regeneration: sparking system-level controls in vivo. Biol Open 2013;2:306-313.
PubMed Central
CAS
PubMed
Google Scholar
Brezun JM, Daszuta A. Depletion in serotonin decreases neurogenesis in the dentate gyrus and the subventricular zone of adult rats. Neuroscience 1999;89:999-1002.
CAS
PubMed
Google Scholar
Sutor B. Gap junctions and their implications for neurogenesis and maturation of synaptic circuitry in the developing neocortex. Results Probl Cell Differ 2002;39:53-73.
CAS
PubMed
Google Scholar
Bonnin A, Torii M, Wang L, Rakic P, Levitt P. Serotonin modulates the response of embryonic thalamocortical axons to netrin-1. Nat Neurosci 2007;10:588-597.
CAS
PubMed
Google Scholar
Upton AL, Salichon N, Lebrand C, et al. Excess of serotonin (5-HT) alters the segregation of ispilateral and contralateral retinal projections in monoamine oxidase A knock-out mice: possible role of 5-HT uptake in retinal ganglion cells during development. J Neurosci 1999;19:7007-7024.
CAS
PubMed
Google Scholar
Witteveen JS, Middelman A, van Hulten JA, Martens GJ, Homberg JR, Kolk SM. Lack of serotonin reuptake during brain development alters rostral raphe-prefrontal network formation. Front Cell Neurosci 2013;7:143.
PubMed Central
PubMed
Google Scholar
van Kleef ES, Gaspar P, Bonnin A. Insights into the complex influence of 5-HT signaling on thalamocortical axonal system development. Eur J Neurosci 2012;35:1563-1572.
PubMed Central
PubMed
Google Scholar
Li Y, Du XF, Liu CS, Wen ZL, Du JL. Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Develop Cell 2012;23:1189-1202.
CAS
Google Scholar
Guthrie PB, Lee RE, Rehder V, Schmidt MF, Kater SB. Self-recognition: a constraint on the formation of electrical coupling in neurons. J Neurosci 1994;14:1477-1485.
CAS
PubMed
Google Scholar
Wolszon LR, Gao WQ, Passani MB, Macagno ER. Growth cone “collapse” in vivo: are inhibitory interactions mediated by gap junctions? J Neurosci 1994;14:999-1010.
CAS
PubMed
Google Scholar
Firme CP, 3rd, Natan RG, Yazdani N, Macagno ER, Baker MW. Ectopic expression of select innexins in individual central neurons couples them to pre-existing neuronal or glial networks that express the same innexin. J Neurosci 2012;32:14265-14270.
PubMed Central
CAS
PubMed
Google Scholar
Anava S, Saad Y, Ayali A. The role of gap junction proteins in the development of neural network functional topology. Insect Mol Biol 2013;22:457-472.
CAS
PubMed
Google Scholar
Montoro RJ, Yuste R. Gap junctions in developing neocortex: a review. Brain Res Brain Res Rev 2004;47:216-226.
CAS
PubMed
Google Scholar
Ming G, Henley J, Tessier-Lavigne M, Song H, Poo M. Electrical activity modulates growth cone guidance by diffusible factors. Neuron 2001;29:441-452.
CAS
PubMed
Google Scholar
Nishiyama M, von Schimmelmann MJ, Togashi K, Findley WM, Hong K. Membrane potential shifts caused by diffusible guidance signals direct growth-cone turning. Nature Neurosci 2008;11:762-771.
CAS
PubMed
Google Scholar
Yazdani N, Firme CP, 3rd, Macagno ER, Baker MW. Expression of a dominant negative mutant innexin in identified neurons and glial cells reveals selective interactions among gap junctional proteins. Develop Neurobiol 2013;73:571-586.
CAS
Google Scholar
Baker MW, Yazdani N, Macagno ER. Gap junction-dependent homolog avoidance in the developing CNS. J Neurosci 2013;33:16673-16683.
CAS
PubMed
Google Scholar
Moore LK, Burt JM. Gap junction function in vascular smooth muscle: influence of serotonin. Am J Physiol 1995;269:H1481-H1489.
CAS
PubMed
Google Scholar
Rorig B, Sutor B. Serotonin regulates gap junction coupling in the developing rat somatosensory cortex. Eur J Neurosci 1996;8:1685-1695.
CAS
PubMed
Google Scholar
Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K. Optogenetics in neural systems. Neuron 2011;7:9-34.
Google Scholar
Knopfel T, Lin MZ, Levskaya A, Tian L, Lin JY, Boyden ES. Toward the second generation of optogenetic tools. J Neurosci 2010;30:14998-15004.
PubMed Central
CAS
PubMed
Google Scholar
Kamm RD, Bashir R. Creating living cellular machines. Ann Biomed Eng 2014;42:445-459.
PubMed Central
PubMed
Google Scholar