Skip to main content
Log in

Caspases: Therapeutic Targets in Neurologic Disease

  • Review
  • Published:
Neurotherapeutics

Abstract

Specific therapies for neurologic diseases such as Alzheimer’s disease provide the potential for better clinical outcomes. Expression of caspases in the brain is developmentally regulated, and dysregulated in neurologic disease, supporting that caspases may be therapeutic targets. The activity of caspases is carefully regulated via binding partners, cleavage, or endogenous inhibitors to prevent spontaneous activation, which could lead to aberrant cell death. This review serves as a brief examination of the current understanding of the regulation and function of caspases, and approaches to specifically target aberrant caspase activity. The use of proper tools to investigate individual caspases is addressed. Moreover, it summarizes the reports of various caspases in Alzheimer’s disease studies. A better understanding of specific caspase pathways in heath and neurodegenerative disease is crucial for identifying specific targets for the development of therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alzheimer A, Stelzmann RA, Schnitzlein HN, Murtagh FR. An English translation of Alzheimer's 1907 paper, "Uber eine eigenartige Erkankung der Hirnrinde". Clin Anat 1995;8:429-431.

    Article  CAS  PubMed  Google Scholar 

  2. Small GW, Rabins PV, Barry PP, et al. Diagnosis and treatment of Alzheimer disease and related disorders. Consensus statement of the American Association for Geriatric Psychiatry, the Alzheimer's Association, and the American Geriatrics Society. JAMA 1997;278:1363-1371.

    Article  CAS  PubMed  Google Scholar 

  3. DeKosky ST, Carrillo MC, Phelps C, et al. Revision of the criteria for Alzheimer's disease: A symposium. Alzheimers Dement 2011;7:e1-e12.

    Article  PubMed  Google Scholar 

  4. Karch CM, Cruchaga C, Goate AM. Alzheimer's disease genetics: from the bench to the clinic. Neuron 2014;83:11-26.

    Article  CAS  PubMed  Google Scholar 

  5. Mace PD, Riedl SJ, Salvesen GS. Caspase enzymology and activation mechanisms. Methods Enzymol 2014;544:161-178.

    Article  CAS  PubMed  Google Scholar 

  6. Lamkanfi M, Declercq W, Kalai M, Saelens X, Vandenabeele P. Alice in caspase land. A phylogenetic analysis of caspases from worm to man. Cell Death Differ 2002;9:358-361.

    Article  CAS  PubMed  Google Scholar 

  7. Miura M, Zhu H, Rotello R, Hartwieg EA, Yuan J. Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 1993;75:653-660.

    Article  CAS  PubMed  Google Scholar 

  8. Thornberry NA, Bull HG, Calaycay JR, et al. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 1992;356:768-774.

    Article  CAS  PubMed  Google Scholar 

  9. Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 1993;75:641-652.

    Article  CAS  PubMed  Google Scholar 

  10. Eckhart L, Ban J, Fischer H, Tschachler E. Caspase-14: analysis of gene structure and mRNA expression during keratinocyte differentiation. Biochem Biophys Res Commun 2000;277:655–659.

    Article  CAS  PubMed  Google Scholar 

  11. Troy CM, Stefanis L, Prochiantz A, Greene LA, Shelanski ML. The contrasting roles of ICE family proteases and interleukin-1beta in apoptosis induced by trophic factor withdrawal and by copper/zinc superoxide dismutase down-regulation. Proc Natl Acad Sci U S A 1996;93:5635-5640

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Pop C, Salvesen GS. Human caspases: activation, specificity, and regulation. J Biol Chem 2009;284:21777-21781.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Troy CM, Akpan N, Jean YY. Regulation of caspases in the nervous system implications for functions in health and disease. Prog Mol Biol Transl Sci 2011;99:265-305.

    Article  CAS  PubMed  Google Scholar 

  14. Denault JB, Eckelman BP, Shin H, Pop C, Salvesen GS. Caspase 3 attenuates XIAP (X-linked inhibitor of apoptosis protein)-mediated inhibition of caspase 9. Biochem J 2007;405:11-19.

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Ribe EM, Jean YY, Goldstein RL, et al. Neuronal caspase 2 activity and function requires RAIDD, but not PIDD. Biochem J 2012;444:591-599.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Kim IR, Murakami K, Chen NJ, et al. DNA damage- and stress-induced apoptosis occurs independently of PIDD. Apoptosis 2009;14:1039-1049.

    Article  CAS  PubMed  Google Scholar 

  17. Manzl C, Krumschnabel G, Bock F, et al. Caspase-2 activation in the absence of PIDDosome formation. J Cell Biol 2009;185:291-303.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Nutt LK, Margolis SS, Jensen M, et al. Metabolic regulation of oocyte cell death through the CaMKII-mediated phosphorylation of caspase-2. Cell 2005;123:89-103.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Shin S, Lee Y, Kim W, Ko H, Choi H, Kim K. Caspase-2 primes cancer cells for TRAIL-mediated apoptosis by processing procaspase-8. EMBO J 2005;24:3532-3542.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Petrilli V, Dostert C, Muruve DA, Tschopp J. The inflammasome: a danger sensing complex triggering innate immunity. Curr Opin Immunol 2007;19:615-622.

    Article  CAS  PubMed  Google Scholar 

  21. Schroder K, Tschopp J. The inflammasomes. Cell 2010;140:821-832.

    Article  CAS  PubMed  Google Scholar 

  22. Schroder K, Zhou R, Tschopp J. The NLRP3 inflammasome: a sensor for metabolic danger? Science 2010;327:296-300.

    Article  CAS  PubMed  Google Scholar 

  23. Tschopp J, Schroder K. NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production? Nat Rev Immunol 2010;10:210-215.

    Article  CAS  PubMed  Google Scholar 

  24. Srinivasula SM, Ashwell JD. IAPs: what's in a name? Mol Cell 2008;30:123-135.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Eckelman BP, Salvesen GS, Scott FL. Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep 2006;7:988-994.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Fulda S. Inhibitor of Apoptosis (IAP) proteins in hematological malignancies: molecular mechanisms and therapeutic opportunities. Leukemia 2014;28:1414-1422.

    Article  CAS  PubMed  Google Scholar 

  27. Eckelman BP, Salvesen GS. The human anti-apoptotic proteins cIAP1 and cIAP2 bind but do not inhibit caspases. J Biol Chem 2006;281:3254-3260.

    Article  CAS  PubMed  Google Scholar 

  28. Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000;102:33-42.

    Article  CAS  PubMed  Google Scholar 

  29. Subramaniam K, Hirpara JL, Tucker-Kellogg L, Tucker-Kellogg G, Pervaiz S. FLIP: a flop for execution signals. Cancer Lett 2013;332:151-155.

    Article  CAS  PubMed  Google Scholar 

  30. McStay GP, Salvesen GS, Green DR. Overlapping cleavage motif selectivity of caspases: implications for analysis of apoptotic pathways. Cell Death Differ 2008;15:322-331.

    Article  CAS  PubMed  Google Scholar 

  31. Tu S, McStay GP, Boucher LM, Mak T, Beere HM, Green DR. In situ trapping of activated initiator caspases reveals a role for caspase-2 in heat shock-induced apoptosis. Nat Cell Biol 2006;8:72-77.

    Article  CAS  PubMed  Google Scholar 

  32. Akpan N, Serrano-Saiz E, Zacharia BE, et al. Intranasal delivery of caspase-9 inhibitor reduces caspase-6-dependent axon/neuron loss and improves neurological function after stroke. J Neuroscience 2011;31:8894-8904.

    Article  CAS  Google Scholar 

  33. Vigneswara V, Akpan N, Berry M, Logan A, Troy CM, Ahmed Z. Combined suppression of CASP2 and CASP6 protects retinal ganglion cells from apoptosis and promotes axon regeneration through CNTF-mediated JAK/STAT signalling. Brain 2014;137:1656-1675.

    Article  PubMed  Google Scholar 

  34. Bouchier-Hayes L, Oberst A, McStay GP, et al. Characterization of cytoplasmic caspase-2 activation by induced proximity. Mol Cell 2009;35:830-840.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Kuida K, Haydar TF, Kuan CY, et al. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 1998;94:325-337.

    Article  CAS  PubMed  Google Scholar 

  36. Troy CM, Rabacchi SA, Hohl JB, Angelastro JM, Greene LA, Shelanski ML. Death in the balance: alternative participation of the caspase-2 and -9 pathways in neuronal death induced by nerve growth factor deprivation. J Neurosci 2001;21:5007-5016.

    CAS  PubMed  Google Scholar 

  37. D'Amelio M, Sheng M, Cecconi F. Caspase-3 in the central nervous system: beyond apoptosis. Trends Neurosci 2012;35:700-709.

    Article  PubMed  Google Scholar 

  38. Williams DW, Kondo S, Krzyzanowska A, Hiromi Y, Truman JW. Local caspase activity directs engulfment of dendrites during pruning. Nat Neurosci 2006;9:1234-1236.

    Article  CAS  PubMed  Google Scholar 

  39. Huesmann GR, Clayton DF. Dynamic role of postsynaptic caspase-3 and BIRC4 in zebra finch song-response habituation. Neuron 2006;52:1061-1072.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Gulyaeva NV, Kudryashov IE, Kudryashova IV. Caspase activity is essential for long-term potentiation. J Neurosci Res 2003;73:853-864.

    Article  CAS  PubMed  Google Scholar 

  41. Li Z, Jo J, Jia JM, et al. Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell 2010;141:859-871.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Snigdha S, Smith ED, Prieto GA, Cotman CW. Caspase-3 activation as a bifurcation point between plasticity and cell death. Neurosci Bull 2012;28:14-24.

    Article  CAS  PubMed  Google Scholar 

  43. Pompl PN, Yemul S, Xiang Z, et al. Caspase gene expression in the brain as a function of the clinical progression of Alzheimer disease. Arch Neurol 2003;60:369-376.

    Article  PubMed  Google Scholar 

  44. Jean YY, Ribe EM, Pero ME, et al. Caspase-2 is essential for c-Jun transcriptional activation and Bim induction in neuron death. Biochem J 2013;455:15-25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Stadelmann C, Deckwerth TL, Srinivasan A, et al. Activation of caspase-3 in single neurons and autophagic granules of granulovacuolar degeneration in Alzheimer's disease. Evidence for apoptotic cell death. Am J Pathol 1999;155:1459-1466.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. LeBlanc A, Liu H, Goodyer C, Bergeron C, Hammond J. Caspase-6 role in apoptosis of human neurons, amyloidogenesis, and Alzheimer's disease. J Biol Chem 1999;274:23426-23436.

    Article  CAS  PubMed  Google Scholar 

  47. Lu DC, Rabizadeh S, Chandra S, et al. A second cytotoxic proteolytic peptide derived from amyloid beta- protein precursor [see comments]. Nat Med 2000;6:397-404.

    Article  CAS  PubMed  Google Scholar 

  48. Matsui T, Ramasamy K, Ingelsson M, et al. Coordinated expression of caspase 8, 3 and 7 mRNA in temporal cortex of Alzheimer disease: relationship to formic acid extractable abeta42 levels. J Neuropathol Exp Neurol 2006;65:508-515.

    Article  CAS  PubMed  Google Scholar 

  49. Tan MS, Yu JT, Jiang T, Zhu XC, Tan L. The NLRP3 inflammasome in Alzheimer's disease. Mol Neurobiol 2013;48:875-882.

    Article  CAS  PubMed  Google Scholar 

  50. Tan MS, Yu JT, Jiang T, et al. NLRP3 polymorphisms are associated with late-onset Alzheimer's disease in Han Chinese. J Neuroimmunol 2013;265:91-95.

    Article  CAS  PubMed  Google Scholar 

  51. Cotman CW, Anderson AJ. A potential role for apoptosis in neurodegeneration and Alzheimer's disease. Mol Neurobiol 1995;10:19-45.

    Article  CAS  PubMed  Google Scholar 

  52. Halle A, et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 2008;9:857-865.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Gamblin TC, et al. Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer's disease. Proc Natl Acad Sci U S A 2003;100:10032-10037.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Chae SS, et al. Caspases-2 and −8 are involved in the presenilin1/gamma-secretase-dependent cleavage of amyloid precursor protein after the induction of apoptosis. J Neurosci Res 2010;88:1926-1933.

  55. Troy CM, et al. Caspase-2 mediates neuronal cell death induced by beta-amyloid. J Neurosci 2000;20:1386-1392.

    CAS  PubMed  Google Scholar 

  56. de Calignon A, et al. Caspase activation precedes and leads to tangles. Nature 2010;464:1201-1204.

  57. Su JH, Zhao M, Anderson AJ, Srinivasan A, Cotman CW. Activated caspase-3 expression in Alzheimer's and aged control brain: correlation with Alzheimer pathology. Brain Res 2001;898:350-357.

    Article  CAS  PubMed  Google Scholar 

  58. Louneva N, et al. Caspase-3 is enriched in postsynaptic densities and increased in Alzheimer's disease. Am J Pathol 2008;173:1488-1495.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Matsuzaki S, Hiratsuka T, Kuwahara R, Katayama T, Tohyama M. Caspase-4 is partially cleaved by calpain via the impairment of Ca2+ homeostasis under the ER stress. Neurochem Int 2010;56;352-356.

  60. Hitomi J, et al. Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. J Cell Biol 2004;165:347-356.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Rohn TT, Head E, Nesse WH, Cotman CW, Cribbs DH. Activation of caspase-8 in the Alzheimer's disease brain. Neurobiol Dis 2001;8:1006-1016.

    Article  CAS  PubMed  Google Scholar 

  62. Rohn TT, et al. Caspase-9 activation and caspase cleavage of tau in the Alzheimer's disease brain. Neurobiol Dis 2002;11:341-354.

    Article  CAS  PubMed  Google Scholar 

  63. Nakagawa T, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 2000;403:98-103.

    Article  CAS  PubMed  Google Scholar 

  64. Ishige K, et al. Role of caspase-12 in amyloid beta-peptide-induced toxicity in organotypic hippocampal slices cultured for long periods. J Pharmacol Sci 2007;104:46-55.

    Article  CAS  PubMed  Google Scholar 

  65. Pozueta J, Lefort R, Ribe EM, Troy CM, Arancio O, Shelanski M. Caspase-2 is required for dendritic spine and behavioural alterations in J20 APP transgenic mice. Nat Commun 2013;4:1939.

  66. Liu F, McCullough LD. Middle cerebral artery occlusion model in rodents: methods and potential pitfalls. J Biomed Biotechnol 2011;2011:464701.

Download references

Acknowledgments

Carol M. Troy was supported in part by National Institutes of Health grant RO1NS081333.

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol M. Troy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1224 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Troy, C.M., Jean, Y.Y. Caspases: Therapeutic Targets in Neurologic Disease. Neurotherapeutics 12, 42–48 (2015). https://doi.org/10.1007/s13311-014-0307-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-014-0307-9

Keywords

Navigation