Skip to main content
Log in

Treatment of Parkinson’s Disease: What’s in the Non-dopaminergic Pipeline?

  • Review
  • Published:
Neurotherapeutics

Abstract

Dopamine depletion resulting from degeneration of nigrostriatal dopaminergic neurons is the primary neurochemical basis of the motor symptoms of Parkinson’s disease (PD). While dopaminergic replacement strategies are effective in ameliorating these symptoms early in the disease process, more advanced stages of PD are associated with the development of treatment-related motor complications and dopamine-resistant symptoms. Other neurotransmitter and neuromodulator systems are expressed in the basal ganglia and contribute to the extrapyramidal refinement of motor function. Furthermore, neuropathological studies suggest that they are also affected by the neurodegenerative process. These non-dopaminergic systems provide potential targets for treatment of motor fluctuations, levodopa-induced dyskinesias, and difficulty with gait and balance. This review summarizes recent advances in the clinical development of novel pharmacological approaches for treatment of PD motor symptoms. Although the non-dopaminergic pipeline has been slow to yield new drugs, further development will likely result in improved treatments for PD symptoms that are induced by or resistant to dopamine replacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lang AE, Obeso JA. Challenges in Parkinson’s disease: restoration of the nigrostriatal dopamine system is not enough. Lancet Neurol 2004;3:309-316.

    PubMed  Google Scholar 

  2. Braak H, Del Tredici K, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 2003;24:197-211.

    PubMed  Google Scholar 

  3. Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci 1989:12:366-375.

    CAS  PubMed  Google Scholar 

  4. Cui G, Jun SB, Jin X, et al. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 2013;494:238-242.

    CAS  PubMed  Google Scholar 

  5. Schwarzschild MA, Agnati L, Fuxe K, Chen, JF, Morelli M. Targeting adenosine A2A receptors in Parkinson’s disease. Trends Neurosci 2006;29:647-654.

    CAS  PubMed  Google Scholar 

  6. Hickey P, Stacy M. Adenosine A2A antagonists in Parkinson’s disease: What’s next? Curr Neurol Neurosci Rep 2012;12:376-385.

    CAS  PubMed  Google Scholar 

  7. Huot P, Fox SH, Brotchie JM. The serotonergic system in Parkinson’s disease. Prog Neurobiol 2011;95:163-212.

    CAS  PubMed  Google Scholar 

  8. Nichols DE, Nichols CD. Serotonin rceptors. Chem Rev 2008;108:1614-1641.

    CAS  PubMed  Google Scholar 

  9. Schiffmann SN, Jacobs O, Vanderhaeghen JJ. Striatal restricted adenosine A2 receptor (RDC8) is expressed by enkephalin but not by substance P neurons: an in situ hybridization histochemistry study. J Neurochem 1991;57:1062-1067.

    CAS  PubMed  Google Scholar 

  10. Rosin DL, Robeva A, Woodard RL, Guyenet PG, Linden J. Immunohistochemical localization of adenosine A2A receptors in the rat central nervous system. J Comp Neurol 1998;401:163-186.

    CAS  PubMed  Google Scholar 

  11. Hettinger BD, Lee A, Linden J, Rosin DL. Ultrastructural localization of adenosine A2A receptors suggests multiple cellular sites for modulation of GABAergic neurons in rat striatum. J Comp Neurol 2001;431:331-346.

    CAS  PubMed  Google Scholar 

  12. Ferré S, O’Connor WT, Fuxe K, Ungerstedt U. The striopallidal neuron: a main locus for adenosine-dopamine interactions in the brain. J Neurosci 1993;13:5402-5406.

    PubMed  Google Scholar 

  13. Mori A, Shindou T. Modulation of GABAergic transmission in the striatopallidal system by adenosine A2A receptors: a potential mechanism for the antiparkinsonian effects of A2A antagonists. Neurology 2003;61(11 Suppl. 6):S44-S48

    CAS  PubMed  Google Scholar 

  14. Jenner P. A2A antagonists as novel non-dopaminergic therapy for motor dysfunction in PD. Neurology 2003;61 (11 Suppl. 6):S32-S38

    CAS  PubMed  Google Scholar 

  15. Fernandez HH, Greeley DR, Zweig RM, et al. Istradefylline as monotherapy for Parkinson disease: Results of the 6002-US-051 trial. Parkinsonism Rel Disord 2010;16:16-20.

    CAS  Google Scholar 

  16. Bara-Jimenez W, Sherzai A, Dimitrova T, et al. Adenosine A(2A) receptor antagonist treatment of Parkinson’s disease. Neurology 2003;61:293-296.

    CAS  PubMed  Google Scholar 

  17. Hauser RA, Hubble JP, Truong DD. Randomized trial of the adenosine A(2A) receptor antagonist istradefylline in advanced PD. Neurology 2003;61:297-303.

    CAS  PubMed  Google Scholar 

  18. Stacy M, Silver D, Mendis T, et al. A 12-week, placebo-controlled study (6002-US-006) of istradefylline in Parkinson disease. Neurology 2008;70:2233-2240.

    CAS  PubMed  Google Scholar 

  19. LeWitt PA, Guttman M, Tetrud JW, et al., Adenosine A2A receptor antagonist istradefylline (KW-6002) reduces “off” time in Parkinson’s disease: a double-blind, randomized, multicenter clinical trial (6002-US-005). Ann Neurol 2008;63:295-302.

    CAS  PubMed  Google Scholar 

  20. Mizuno Y, Hasegawa K, Kondo T, Kuno S, Yamamoto M. Clinical efficacy of istradefylline (KW-6002) in Parkinson’s disease: a randomized, controlled study. Mov Disord 2010;25:1437-1443.

    PubMed  Google Scholar 

  21. Factor S, Mark MH, Watts R, et al. A long-term study of istradefylline in subjects with fluctuating Parkinson’s disease. Parkinsonism Relat Disord 2010;16:423-426.

    PubMed  Google Scholar 

  22. Hauser RA, Shulman LM, Trugman JM, et al. Study of istradefylline in patients with Parkinson’s disease on levodopa with motor fluctuations. Mov Disord 2008;23:2177-2185.

    PubMed  Google Scholar 

  23. Mizuno Y, Kondo T, the Japanese Istradefylline Study Group. Adenosine A2A receptor antagonist istradefylline reduces daily off time in Parkinson’s disease. Mov Disord 2013;28:1138-1141

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Pourcher E, Fernandez HH, Stacy M, Mori A, Ballerini R, Chaikin P. Istradefylline for Parkinson’s disease patients experiencing motor fluctuations: results of the KW-6002-US-018 study. Parkinsonism Relat Disord 2012;18:178-184.

    PubMed  Google Scholar 

  25. Park A, Stacy M. Istradefylline for the treatment of Parkinson’s disease. Expert Opin Pharmacother 2012;13:111-114.

    CAS  PubMed  Google Scholar 

  26. Dungo R, Deeks ED. Istradefylline: first global approval. Drugs 2013;73:875-882.

    CAS  PubMed  Google Scholar 

  27. Kyowa Hakka Kirin Pharma, Inc. A 12-week randomized study to evaluate oral istradefylline in subjects with moderate to severe Parkinson’s disease (KW-6002). Available at: http://clinicaltrials.gov/show/NCT01968031. Accessed 5 Nov 2013.

  28. Hauser RA, Cantillon M, Pourcher E, et al. Preladenant in patients with Parkinson’s disease and motor fluctuations: a phase 2, double-blind, randomized trial. Lancet Neurol 2011;10:221-229.

    CAS  PubMed  Google Scholar 

  29. Factor SA, Wolski K, Togasaki DM, et al. Long-term safety and efficacy of preladenant in subjects with fluctuating Parkinson’s disease. Mov Disord 2013;28:817-820.

    PubMed  Google Scholar 

  30. Merck. Merck provides update on phase III clinical program for preladenant, the company’s investigational Parkinson’s disease medicine. Available at: http://www.mercknewsroom.com/press-release/research-and-development-news/merck-provides-update-phase-iii-clinical-program-prelade. Accessed May 23, 2013.

  31. Olanow C, Hauser R, Kieburtz K, et al. A phase 2, placebo-controlled, randomized, double-blind trial of tozadenant (SYN-115) in patients with Parkinson’s disease with wearing-off fluctuations on levodopa. Neurology 2013;Emerging Science Abstracts:005.

  32. Black KJ, Koller JM, Campbell MC, Gusnard DA, Bandak SI. Quantification of indirect pathway inhibition by the adenosine A2a antagonist SYN115 in Parkinson disease. J Neurosci 2010;30:16248-16292.

    Google Scholar 

  33. Schwarzschild MA. Caffeine in Parkinson disease: better for cruise control than snooze patrol? Neurology 2012;79:616-618.

    PubMed  Google Scholar 

  34. Postuma RB, Lang AE, Munhow RP, et al. Caffeine for treatment of Parkinson disease: a randomized controlled trial. Neurology 2012;79:651-658.

    CAS  PubMed  Google Scholar 

  35. Jenner P, Mori A, Hauser R, Morelli M, Fredholm BB, Chen JF. Adenosine, adenosine A2A antagonists, and Parkinson’s disease. Parkinsonism Rel Disord 2009;15:406-413.

    CAS  Google Scholar 

  36. Calon F, Dridi M, Hornykiewicz O, Bédard PJ, Rajput AH, Di Paolo T. Increased adenosine A2A receptors in the brain of Parkinson’s disease patients with dyskinesias. Brain 2004;127:1075-1084.

    PubMed  Google Scholar 

  37. Xiao D, Bastia E, Xu YH, et al. Forebrain adenosine A2A receptors contribute to L-3,4-dihydroxyphenylalanine-induced dyskinesia in hemiparkinsonian mice. J Neurosci 2006;26:13548-13555.

    CAS  PubMed  Google Scholar 

  38. Ramlackhansingh AF, Bose SK, Ahmed I, Turkheimer FE, Pavese N, Brooks DJ. Adenosine 2A receptor availability in dyskinetic and nondyskinetic patients with Parkinson disease. Neurology 2011;76:1811-1816.

    Google Scholar 

  39. Wills AM, Eberly S, Tennis M, et al. Caffeine consumption and risk of dyskinesia in CALM-PD. Mov Disord 2013;28:380-383.

    CAS  PubMed  Google Scholar 

  40. Luo J, Kaplitt MG, Fitzsimmons HL, et al. Subthalamic GAD gene therapy in a Parkinson’s disease rat model. Science 2002;298:425-429.

    CAS  PubMed  Google Scholar 

  41. Kaplitt MG, Feigin A, Tang C, et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 2007;369:2097-2105.

    CAS  PubMed  Google Scholar 

  42. LeWitt PA, Rezai AR, Leehey MA, et al. AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol 2011:10:309-319.

    CAS  PubMed  Google Scholar 

  43. Neurologix, Inc. Long term follow-up study for rAAV-GAD treated subjects. Available at: http://clinicaltrials.gov/ct2/show/NCT01301573. Accessed 20 Feb /2012.

  44. Tani Y, Ogata A, Koyama M, Inoue T. Effects of piclozotan (SUN N4057), a partial serotonin 1A receptor agonist, on motor complications induced by repeated administration of levodopa in parkinsonian rats. Eur J Pharmacol 2010;649:218-223.

    CAS  PubMed  Google Scholar 

  45. Hauser RA, Gertner JM, Okamoto M, Reed RF, Sage JI. Piclozotan reduces dyskinesia and OFF time in Parkinson’s disease (PD) patients with L-dopa induced motor complications. Parkinsonism Relat Disord 2009;15(Suppl. 2): S118. Abstract

    Google Scholar 

  46. Sage JI, Hauser RA, Cordon ME, et al. Pilot study of the efficacy and safety of piclozotan in Parkinson’s disease with L-dopa induced motor complications. Mov Disord 2009;24(Suppl. 2):S277.

    Google Scholar 

  47. Jones CA, Johnston LC, Jackson MJ, et al. An in vivo pharmacological evaluation of pardoprunox (SLV308)--a novel combined dopamine D(2)/D(3) receptor partial agonist and 5-HT(1A) receptor agonist with efficacy in experimental models of Parkinson's disease. Eur Neuropsychopharmacol 2010;20:582-593.

    CAS  PubMed  Google Scholar 

  48. Johnston LC, Jackson MJ, Rose S, McCreary AC, Jenner P. Pardoprunox reverses motor deficits but induces only mild dyskinesia in MPTP-treated common marmosets. Mov Disord 2010;25:2059-2068.

    PubMed  Google Scholar 

  49. Bronzova J, Sampaio C, Hauser RA, et al. Double-blind study of pardoprunox, a new partial dopamine agonist, in early Parkinson’s disease. Mov Disord 2010;25:738-746.

    PubMed  Google Scholar 

  50. Sampaio C, Bronzova J, Hauser RA, et al. Pardoprunox in early Parkinson’s disease: results from 2 large, randomized double-blind trials. Mov Disord 2011;26:1464-1476.

    PubMed  Google Scholar 

  51. Rascol O, Bronzova J, Hauser RA, et al. Pardoprunox as adjunct therapy to levodopa in patients with Parkinson’s disease experiencing motor fluctuations: results of a double-blind, randomized, placebo-controlled trial. Parkinsonism Relat Disord 2012;18:370-376.

    CAS  PubMed  Google Scholar 

  52. Abbott Products. A pilot study to assess efficacy and safety of pardoprunox as adjunct therapy to L-dopa in the treatment of patients with Parkinson’s disease experiencing motor fluctuations and dyskinesia. Available at: http://clinicaltrials.gov/ct2/show/NCT00903838. Accessed 25 Aug 2011.

  53. Ahlskog JE, Muenter MD. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord 2001;16:448-458.

    CAS  PubMed  Google Scholar 

  54. Evans JR, Mason, SL, Williams-Gray CH, et al. The natural history of treated Parkinson’s disease in an incident, community based cohort. J Neurol Neurosurg Psychiatry 2011;82:1112-1118.

    PubMed  Google Scholar 

  55. Nutt JG. Levodopa-induced dyskinesia: review, observations, and speculations. Neurology 1990;40:340-345.

    CAS  PubMed  Google Scholar 

  56. Luquin MR, Scipioni O, Vaamonde J, Gershanik O, Obeso JA. Levodopa-induced dyskinesias in Parkinson’s disease: clinical and pharmacological classification. Mov Disord 1992;7:117-124.

    CAS  PubMed  Google Scholar 

  57. Brotchie JM. Nondopaminergic mechanisms in levodopa-induced dyskinesias. Mov Disord 2005;20:919-931.

    PubMed  Google Scholar 

  58. Brotchie J, Jenner P. New approaches to therapy. Int Rev Neurobiol 2011;98:123-150.

    CAS  PubMed  Google Scholar 

  59. Huot P, Johnston TH, Koprich JB, Fox SH, Brotchie JM. The pharmacology of L-dopa-induced dyskinesia in Parkinson’s disease. Pharmacol Rev 2013;65:171-222.

    CAS  PubMed  Google Scholar 

  60. Day M, Wang Z, Ding J, et al. Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nat Neurosci 2006;9:251-259.

    CAS  PubMed  Google Scholar 

  61. Jenner P. Molecular mechanisms of L-dopa-induced dyskinesia. Nat Rev Neurosci 2008;9:665-677.

    CAS  PubMed  Google Scholar 

  62. Calabresi P, Di Fillippo M, Ghiglieri V, et al. Levodopa-induced dyskinesia in patients with Parkinson’s disease: filling the bench-to-bedside gap. Lancet Neurol 2010;9:1106-1117.

    CAS  PubMed  Google Scholar 

  63. Duty S. Targeting glutamate receptors to tackle the pathogenesis, clinical symptoms, and levodopa-induced dyskinesia associated with Parkinson’s disease. CNS Drugs 2012:26:1017-1032.

    CAS  PubMed  Google Scholar 

  64. Blanchet PJ, Konitsiotis S, Whittemore EB, et al. Differing effects of N-methyl-D-aspartate receptor subtype selective antagonists on dyskinesias in levodopa-treated 1-methyl-4-phenyl-tetrahydropyridine monkeys. J Pharmacol Exp Ther 1999;290:1034-1040.

    CAS  PubMed  Google Scholar 

  65. Nash JE, Ravenscroft P, McGuire S, et al. The NR2B-selective NMDA receptor antagonist CP-101,606 exacerbates L-dopa-induced dyskinesia and provides mild potentiation of anti-parkinsonian effects of L-dopa in the MPTP-lesioned marmoset model of Parkinson’s disease. Exp Neurol 2004:188:471-479.

    CAS  PubMed  Google Scholar 

  66. Verhagen Metman L, Del Dotto P, van den Munckhof P, et al. Amantadine as treatment for dyskinesias and motor fluctuations in Parkinson’s disease. Neurology 1998;50:1323-1326.

    CAS  PubMed  Google Scholar 

  67. Pahwa R, Factor SA, Lyons KE, et al. Practice parameter: treatment of Parkinson disease with motor fluctuations and dyskinesia (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2006;66:983-995.

    CAS  PubMed  Google Scholar 

  68. Fox SH, Katzenschlager R, Lim SY, et al. The Movement Disorder Society evidence-based medicine review update; treatments for the motor symptoms of Parkinson’s disease. Mov Disord 2011;26(Suppl. 3):S2-S41.

    PubMed  Google Scholar 

  69. Sawada H, Oeda T, Kuno S, et al. Amantadine for dyskinesias in Parkinson’s disease: a randomized controlled trial. PLoS One 2010;5:e15298.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Shoulson I, Penney J, McDermott M, et al. A randomized, controlled trial of remacemide for motor fluctuations in Parkinson’s disease. Neurology 2001;56:455-462

    CAS  PubMed  Google Scholar 

  71. Nutt JG, Gunzler SA, Kirchhoff T, et al. Effects of a NR2B selective NMDA glutamate antagonist, CP-101,606, on dyskinesia and Parkinsonism. Mov Disord 2008;23:1860-1866.

    PubMed Central  PubMed  Google Scholar 

  72. Merello M, Nouzeilles MI, Cammarota A, Leiguarda R. Effect of memantine (NMDA antagonist) on Parkinson’s disease: a double-blind crossover randomized study. Clin Neuropharmacol 1999;22:273-276.

    CAS  PubMed  Google Scholar 

  73. Hanagasi HA, Kaptanoglu G, Sahin HA, Emre M. The use of NMDA antagonist memantine in drug-resistant dyskinesias resulting from L-dopa. Mov Disord 2000;15:1016-1017.

    CAS  PubMed  Google Scholar 

  74. Varanese S, Howard J, DiRocco A. NMDA antagonist memantine improves levodopa-induced dyskinesias and “on-off” phenomena in Parkinson’s disease. Mov Disord 2010;25:508-510.

    PubMed  Google Scholar 

  75. Vidal EI, Fukushima FB, Valle AP, Villas Boas PJ. Unexpected improvement in levodopa-induced dyskinesia and on-off phenomena after introduction of memantine for treatment of Parkinson’s disease dementia. J Am Geriatr Soc 2013;61:170-172.

    PubMed  Google Scholar 

  76. Verhagen Metman L, Del Dotto P, Natté R, van den Munckhof P, Chase TN. Dextromethorphan improves levodopa-induced dyskinesias in Parkinson’s disease. Neurology 1998;51:203-206.

    CAS  PubMed  Google Scholar 

  77. Olney N, Rosen H. AVP-923, a combination of dextromethorphan hydrobromide and quinidine sulfate for the treatment of pseudobulbar affect and neuropathic pain. IDrugs 2010;13:254-265.

    CAS  PubMed  Google Scholar 

  78. Avanir Pharmaceuticals. Safety and Efficacy of AVP-923 in the treatment of levodopa-induced dyskinesia in Parkinson’s disease patients (LID in PD). Available at: http://clinicaltrials.gov/show/NCT01767129. Accessed 28 Oct 2013.

  79. Paquette MA, Martinez AA, Macheda T, et al. Anti-dyskinetic mechanisms of amantadine and dextromethorphan in the 6-OHDA rat model of Parkinson’s disease: role of NMDA vs. 5-HT1A receptors. Eur J Neurosci 2012;36:3224-3234.

    PubMed Central  PubMed  Google Scholar 

  80. Konitsiotis S, Blanchet PJ, Verhagen L, Lamers E, Chase TN. AMPA receptor blockade improves levodopa-induced dyskinesia in MPTP monkeys. Neurology 2000;54:1589-1595.

    CAS  PubMed  Google Scholar 

  81. Silverdale MA, Nicholson SL, Crossman AR, Brotchie JM. Topiramate reduces levodopa-induced dyskinesia in the MPTP-lesioned marmoset model of Parkinson’s disease. Mov Disord 2005;20:403-409.

    PubMed  Google Scholar 

  82. Lees A, Fahn S, Eggert KM, et al. Perampanel, an AMPA antagonist, found to have no benefit in reducing “off” time in Parkinson’s disease. Mov Disord 2012;27:284-288.

    CAS  PubMed  Google Scholar 

  83. National Institute of Neurological Disorders and Stroke (NINDS). Talampanel to treat Parkinson’s disease. Available at: http://clinicaltrials.gov/show/NCT00108667. Accessed 3 March 2008.

  84. Teva Pharmaceutical Industries. Effects of talampanel on patients with advanced Parkinson’s disease. Available at: http://clinicaltrials.gov/ct2/show/NCT00036296. Accessed 11 Apr 2011.

  85. Conn PJ, Battaglia G, Marino MJ, Nicoletti F. Metabotropic glutamate receptors in the basal ganglia motor circuit. Nat Rev Neurosci 2005;6:787-798.

    CAS  PubMed  Google Scholar 

  86. Dickerson JW, Conn PJ. Therapeutic potential of targeting metabotropic glutamate receptors for Parkinson’s disease. Neurodegener Dis Manag 2012;2:221-232.

    PubMed Central  PubMed  Google Scholar 

  87. Samadi P, Gregoire L, Morissette M, et al. mGluR5 metabotropic glutamate receptors and dyskinesias in MPTP monkeys. Neurobiol Aging 2008;29:1040-1051.

    CAS  PubMed  Google Scholar 

  88. Mela F, Marti M, Dekundy A, Danysz W, Morari M, Cenci MA. Antagonism of metabotropic glutamate receptor type 5 attenuates L-DOPA-induced dyskinesia and its molecular and neurochemical correlates in a rat model of Parkinson’s disease. J Neurochem 2007;101:483-497.

    CAS  PubMed  Google Scholar 

  89. Rylander D, Recchia A, Mela F, Dekundy A, Danysz W, Cenci MA. Pharmacological modulation of glutamate transmission in a rat model of L-DOPA-induced dyskinesia: effects on motor behavior and striatal nuclear signaling. J Pharmacol Exp Ther 2009;330:227-235.

    CAS  PubMed  Google Scholar 

  90. Gregoire L, Morin N, Ouattara B, et al, The acute antiparkinsonian and antidyskinetic effect of AFQ056, a novel metabotropic glutamate receptor type 5 antagonist, in L-Dopa-treated parkinsonian monkeys. Parkinsonism Relat Disord 2011;17:270-276.

    PubMed  Google Scholar 

  91. Rylander D, Iderberg H, Li Q, et al. A mGluR5 antagonist under clinical development improves L-DOPA-induced dyskinesia in parkinsonian rats and monkeys. Neurobiol Dis 2010;39:352-361.

    CAS  PubMed  Google Scholar 

  92. Morin M, Gregoire L, Gomez-Mancilla B, Gasparini F, DiPaolo T. Effect of the metabotropic glutamate receptor type 5 antagonists MPEP and MTEP in parkinsonian monkeys. Neuropharmacology 2010;58:981-986.

    CAS  PubMed  Google Scholar 

  93. Johnston TH, Fox SH, McIldowie MJ, Piggott MJ, Brotchie JM. Reduction of L-DOPA-induced dyskinesia by the selective metabotropic glutamate receptor antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaque model of Parkinson’s disease. J Pharmacol Exp Ther 2010;333:865-873.

    CAS  PubMed  Google Scholar 

  94. Nickols HH, Conn PJ. Development of allosteric modulators of GPCRs for treatment of CNS disorders. Neurobiol Dis 2013 Sep 27 [Epub ahead of print].

  95. Berg D, Godau J, Trenkwalder C, et al. AFQ056 treatment of levodopa-induced dyskinesias: results of 2 randomized controlled trials. Mov Disord 2011;26:1243-1250.

    PubMed  Google Scholar 

  96. Stocchi F, Rascol O, Destee A, et al. AFQ056 in Parkinson patients with levodopa-induced dyskinesias: 13-week, randomized, dose-finding study. Mov Disord 2013;28:1838-1846.

    CAS  PubMed  Google Scholar 

  97. Novartis Pharmaceuticals. Evaluation of the efficacy and safety of modified release AFQ056 in Parkinson’s patients with L-dopa induced dyskinesias. Available at: http://clinicaltrials.gov/ct2/show/NCT01491529. Accessed 23 Aug 2013.

  98. Addex Pharma S.A. ADX48621 for the treatment of levodopa induced dyskinesia in patients with Parkinson’s disease. Available at: http://clinicaltrials.gov/show/NCT01336088. Accessed 13 Jul 2012.

  99. Tison F, Durif F, Corval JC, et al. Safety, tolerability and anti-dyskinetic efficacy of dipraglurant, a novel mGluR5 negative allosteric modulator (NAM) in Parkinson’s disease (PD) patients with levodopa-induced dyskinesia (LID). Neurology 2013;80:S23.004.

    Google Scholar 

  100. Scheinen M, Lomasney JW, Hayden-Hixon DM, et al. Distribution of alpha 2-adrenergic receptor subtype gene expression in rat brain. Brain Res Mol Brain Res 1994;21:133-149.

    Google Scholar 

  101. Fox SH, Henry B, Hill MP, Peggs D, Crossman AR, Brotchie JM. Neural mechanisms underlying peak-dose dyskinesia induced by levodopa and apomorphine are distinct: evidence from the effects of the alpha(2) adrenoceptor antagonist idazoxan. Mov Disord 2001;16:642-650.

    CAS  PubMed  Google Scholar 

  102. Johnston TH, Fox SH, Piggott MJ, Savola JM, Brotchie JM. The α2 adrenergic antagonist fipamezole improves quality of levodopa action in Parkinsonian primates. Mov Disord 2010;25:2084-2093.

    PubMed  Google Scholar 

  103. Buck K, Voehringer P, Ferger B. The alpha(2) adrenoceptor antagonist idazoxan alleviates L-DOPA-induced dyskinesia by reduction of striatal dopamine levels: an in vivo microdialysis study in 6-hydroxydopamine-lesioned rats. J Neurochem 2010;112:444-452.

    CAS  PubMed  Google Scholar 

  104. Savola JM, Hill M, Engstrom M, et al. Fipamezole (JP-1730) is a potent alpha2 adrenergic receptor antagonist that reduces levodopa-induced dyskinesia in the MPTP-lesioned primate model of Parkinson's disease. Mov Disord 2003;18:872-883.

    PubMed  Google Scholar 

  105. Henry B, Fox SH, Peggs D, Crossman AR, Brotchie JM. The alpha2-adrenergic receptor antagonist idazoxan reduces dyskinesia and enhances anti-parkinsonian actions of L-dopa in the MPTP-lesioned primate model of Parkinson's disease. Mov Disord 1999;14:744-753.

    CAS  PubMed  Google Scholar 

  106. Rascol O, Arnulf I, Peyro-Saint Paul H, et al. Idazoxan, an alpha-2 antagonist, and L-dopa-induced dyskinesias in Parkinson’s disease. Mov Disord 2001;16:708-713.

    CAS  PubMed  Google Scholar 

  107. Manson AJ, Iakovidou E, Lees AK. Idazoxan is ineffective for levodopa-induced dyskinesias in Parkinson’s disease. Mov Disord 2000;15:336-337.

    CAS  PubMed  Google Scholar 

  108. Dimitrova TD, Bara-Jimenez W, Savola JM, et al. Alpha2-adrenergic antagonist effects in Parkinson’s disease. Mov Disord 2009;24(suppl 1):S261.

    Google Scholar 

  109. LeWitt P, Hauser RA, Lu M, et al. Randomized clinical trial of fipamezole for dyskinesia in Parkinson disease (FJORD study). Neurology 2012;79:163-169.

    CAS  PubMed  Google Scholar 

  110. Goetz CG, Damier P, Hicking C, et al. Sarizotan as a treatment for dyskinesias in Parkinson’s disease: a double-blind placebo-controlled trial. Mov Disord 2007;22:179-186.

    PubMed  Google Scholar 

  111. Bezard E, Tronci E, Pioli EY, et al. Study of the antidyskinetic effect of eltoprazine in animal models of levodopa-induced dyskinesia. Mov Disord 2013;28:1088-1096.

    CAS  PubMed  Google Scholar 

  112. PsychoGenics, Inc. A double-blind, randomized, placebo controlled, dose finding study of oral eltoprazine for treatment of levodopa-induced dyskinesias (LID) in a levodopa challenge-dose setting in Parkinson Disease. Available at http://www.clinicaltrialsregister.eu/ctr-search/trial/2009-015928-28/SE. Accessed 13 Aug 2010.

  113. Huot P, Fox SH, Newman-Tancredi A, Brotchie JM. Anatomically selective serotonergic type 1A and serotonergic type 2A therapies for Parkinson’s disease: an approach to reducing dyskinesia without exacerbating Parkinsonism? J Pharmacol Exp Ther 2011;339:2-8.

    CAS  PubMed  Google Scholar 

  114. Okuma Y, Yanagisawa N. The clinical spectrum of freezing of gait in Parkinson’s disease. Mov Disord 2008;23(Suppl. 2):S426-430.

    PubMed  Google Scholar 

  115. Bloem BR, Hausdorff JM, Visser JE, Giladi N. Falls and freezing of gait in Parkinson’s disease: a review of two interconnected, episodic phenomena. Mov Disord 2004;19:871-884.

    PubMed  Google Scholar 

  116. Giladi N. Medical treatment of freezing of gait. Mov Disord 2008;23(Suppl. 2):S482-488.

    PubMed  Google Scholar 

  117. Devos D, Defebvre L, Bordet R. Dopaminergic and non-dopaminergic pharmacological hypotheses for gait disorders in Parkinson’s disease. Fundamen Clin Phamacol 2010;24:407-421.

    CAS  Google Scholar 

  118. Benarroch EE. Pedunculopontine nucleus: functional organization and clinical implications. Neurology 2013;80:1148-1155.

    PubMed  Google Scholar 

  119. Chung KA, Lobb BM, Nutt JG, Horak FB. Effects of a central cholinesterase inhibitor on reducing falls in Parkinson disease. Neurology 2010;75:1263-1269.

    CAS  PubMed  Google Scholar 

  120. Research and Enterprise Department, UK. A randomised, double blind, placebo controlled trial to evaluate the effect of Rivastigmine on gait in people with Parkinson’s disease who have fallen. Available at http://www.clinicaltrialsregister.eu/ctr-search/trial/2011-003053-25/GB. Accessed 11 May 2012.

  121. Rush University Medical Center. Varenicline for gait and balance impairment in Parkinson disease. Available at: http://clinicaltrials.gov/show/NCT01341080. Accessed 26 Sep 2012.

  122. Aureil E, Hausdorff JM, Herman T, Simon ES, Giladi N. Effects of methylphenidate on cognitive function and gait in patients with Parkinson’s disease: a pilot study. Clin Neuropharmacol 2006;29:15-17.

    Google Scholar 

  123. Devos D, Krystkowiak P, Clement F, et al. Improvement of gait by chronic, high doses of methylphenidate in patients with advanced Parkinson’s disease. J Neurol Neurosurg Psychiatry 2007;78:470-475.

    CAS  PubMed  Google Scholar 

  124. Pollak L Dobronevsky Y, Prohorov T, Bahunker S, Rabey JM. Low dose methylphenidate improves freezing in advanced Parkinson’s disease during off-state. J Neural Transm Suppl 2007;72:145-148.

    CAS  PubMed  Google Scholar 

  125. Moreau C, Delval A, Defebvre L, et al. Methylphenidate for gait hypokinesia and freezing in patients with Parkinson’s disease undergoing subthalamic stimulation : a multicentre, parallel, randomised, placebo-controlled trial. Lancet Neurol 2012;11:589-596.

    CAS  PubMed  Google Scholar 

  126. Espay AJ, Dwivedi AK, Payne M, et al. Methylphenidate for gait impairment in Parkinson disease: a randomized clinical trial. Neurology 2011;76:1256-1262.

    CAS  PubMed  Google Scholar 

  127. Moreau C, Delval A, Tiffreau V, et al. Memantine for axial signs in Parkinson’s disease : a randomised, double-blind, placebo-controlled pilot study. J Neurol Neurosurg Psychiatry 2013;84:552-555.

    PubMed Central  PubMed  Google Scholar 

  128. Kim YE, Yun JY, Yang HJ, et al. Intravenous amantadine for freezing of gait resistant to dopaminergic therapy: a randomized, double-blind, placebo-controlled, cross-over clinical trial. PLoS One 2012;7:e48890.

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Kalia LV, Brotchie JM, Fox SH. Novel nondopaminergic targets for motor features of Parkinson’s disease: review of recent trials. Mov Disord 2013;28:131-144.

    CAS  PubMed  Google Scholar 

  130. Colosimo C, Martínez-Martin P, Fabbrini G, et al. Task force report on scales to assess dyskinesia in Parkinson’s disease: critique and recommendations. Mov Disord 2010;25:1131-1142.

    PubMed  Google Scholar 

Download references

Acknowledgments

Work on this review was supported by NIH (5K24NS060991) and DoD (W81XWH-11-1-0150) (M.A.S.).

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Y. Hung.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1224 kb)

ESM 2

(PDF 1225 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hung, A.Y., Schwarzschild, M.A. Treatment of Parkinson’s Disease: What’s in the Non-dopaminergic Pipeline?. Neurotherapeutics 11, 34–46 (2014). https://doi.org/10.1007/s13311-013-0239-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-013-0239-9

Keywords

Navigation