Andruszkiewicz R, Silverman RB. 4-Amino-3-alkylbutanoic acids as substrates for gamma-aminobutyric acid aminotransferase. J Biol Chem. 1990;265(36):22288–91.
CAS
PubMed
Google Scholar
Pritchard N, Edwards K, Russell AW, Perkins BA, Malik RA, Efron N. Corneal confocal microscopy predicts 4-year incident peripheral neuropathy in type 1 diabetes. Diabetes care. 2015:dc142114.
Toth C. Pregabalin: latest safety evidence and clinical implications for the management of neuropathic pain. Ther Adv Drug Saf. 2014;5(1):38–56.
CAS
PubMed
PubMed Central
Google Scholar
D’Arcy Y, McCarberg B, Parsons B, Behar R, Thorpe A, Alexander A. Pregabalin for the treatment of neuropathic pain: a narrative review for primary care providers. Curr Med Res Opin. 2017;33(8):1353–9.
PubMed
Google Scholar
Frampton JE. Pregabalin: a review of its use in adults with generalized anxiety disorder. CNS Drugs. 2014;28(9):835–54.
CAS
PubMed
Google Scholar
Tavakoli M, Mitu-Pretorian M, Petropoulos IN, Fadavi H, Asghar O, Alam U, et al. Corneal confocal microscopy detects early nerve regeneration in diabetic neuropathy after simultaneous pancreas and kidney transplantation. Diabetes. 2012:DB_120574.
Handelsman Y, Bloomgarden ZT, Grunberger G, Umpierrez G, Zimmerman RS, Bailey TS, et al. American Association of Clinical Endocrinologists and American College of Endocrinology-Clinical Practice Guidelines for Developing a Diabetes Mellitus Comprehensive Care Plan–2015—executive summary. Endocr Pract. 2015;21(4):413–37.
PubMed
Google Scholar
Attal N, Cruccu G, Baron R, Haanpaa M, Hansson P, Jensen TS, et al. EFNS guidelines on the pharmacological treatment of neuropathic pain: 2010 revision. Eur J Neurol. 2010;17(9):1113-e88.
PubMed
Google Scholar
Bril V, England J, Franklin GM, Backonja M, Cohen J, Del Toro D, et al. Evidence-based guideline: treatment of painful diabetic neuropathy: report of the American Academy of Neurology, the American Association of Neuromuscular and Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation. Neurology. 2011;76(20):1758–65.
CAS
PubMed
PubMed Central
Google Scholar
Pop-Busui R, Boulton AJ, Feldman EL, Bril V, Freeman R, Malik RA, et al. Diabetic neuropathy: a position statement by the American Diabetes Association. Diabetes Care. 2017;40(1):136–54.
CAS
PubMed
Google Scholar
NICE. Neuropathic pain in adults: pharmacological management in non-specialist settings. NICE. 2017.
Fink K, Dooley DJ, Meder WP, Suman-Chauhan N, Duffy S, Clusmann H, et al. Inhibition of neuronal Ca(2 +) influx by gabapentin and pregabalin in the human neocortex. Neuropharmacology. 2002;42(2):229–36.
CAS
PubMed
Google Scholar
Hutson SM, Berkich D, Drown P, Xu B, Aschner M, LaNoue KF. Role of branched-chain aminotransferase isoenzymes and gabapentin in neurotransmitter metabolism. J Neurochem. 1998;71(2):863–74.
CAS
PubMed
Google Scholar
Micheva KD, Taylor CP, Smith SJ. Pregabalin reduces the release of synaptic vesicles from cultured hippocampal neurons. Mol Pharmacol. 2006;70(2):467–76.
CAS
PubMed
Google Scholar
Moore RA, Straube S, Wiffen PJ, Derry S, McQuay HJ. Pregabalin for acute and chronic pain in adults. Cochrane Database Syst Rev. 2009;3:Cd007076.
Google Scholar
Lauria-Horner BA, Pohl RB. Pregabalin: a new anxiolytic. Expert Opin Investig Drugs. 2003;12(4):663–72.
CAS
PubMed
Google Scholar
Azmi S, Ferdousi M, Petropoulos IN, Ponirakis G, Fadavi H, Tavakoli M, et al. Corneal confocal microscopy shows an improvement in small-fiber neuropathy in subjects with type 1 diabetes on continuous subcutaneous insulin infusion compared with multiple daily injection. Diabetes Care. 2015;38(1):e3–4.
PubMed
Google Scholar
Randinitis EJ, Posvar EL, Alvey CW, Sedman AJ, Cook JA, Bockbrader HN. Pharmacokinetics of pregabalin in subjects with various degrees of renal function. J Clin Pharmacol. 2003;43(3):277–83.
CAS
PubMed
Google Scholar
Bockbrader HN, Wesche D, Miller R, Chapel S, Janiczek N, Burger P. A comparison of the pharmacokinetics and pharmacodynamics of pregabalin and gabapentin. Clin Pharmacokinet. 2010;49(10):661–9.
CAS
PubMed
Google Scholar
Schifano F. Misuse and abuse of pregabalin and gabapentin: cause for concern? CNS Drugs. 2014;28(6):491–6.
CAS
PubMed
Google Scholar
Statistics OfN. Deaths related to drug poisoning in England and Wales: 2016 registrations 2017. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/deathsrelatedtodrugpoisoninginenglandandwales/2016registrations—people-aged-40-to-49-years-have-the-highest-rate-of-drug-misuse-deaths.
Iacobucci G. UK government to reclassify pregabalin and gabapentin after rise in deaths. BMJ. 2017;358.
Stannard C, Brew I, Browne E, Brinksman S, Collett B, Gilvarry E, et al. Advice for prescribers on the risk of the misuse of pregabalin and gabapentin. Public Health England and NHS England; 2014:pp 1–9.
International Diabetes Federation. IDF Diabetes Atlas. 8th ed. Brussels: International Diabetes Federation; 2017.
Google Scholar
Gordois A, Scuffham P, Shearer A, Oglesby A, Tobian JA. The health care costs of diabetic peripheral neuropathy in the US. Diabetes Care. 2003;26(6):1790–5.
PubMed
Google Scholar
Van Acker K, Bouhassira D, De Bacquer D, Weiss S, Matthys K, Raemen H, et al. Prevalence and impact on quality of life of peripheral neuropathy with or without neuropathic pain in type 1 and type 2 diabetic patients attending hospital outpatients clinics. Diabetes Metab. 2009;35(3):206–13.
PubMed
Google Scholar
Boulton AJ, Vinik AI, Arezzo JC, Bril V, Feldman EL, Freeman R, et al. Diabetic neuropathies a statement by the American Diabetes Association. Diabetes Care. 2005;28(4):956–62.
PubMed
Google Scholar
Tolle T, Freynhagen R, Versavel M, Trostmann U, Young JP Jr. Pregabalin for relief of neuropathic pain associated with diabetic neuropathy: a randomized, double-blind study. Eur J Pain. 2008;12(2):203–13.
PubMed
Google Scholar
Food Drug Administration Centre for Drugs Evaluation Research. Highlights of Prescribing Information (LYRICA) Pregabalin. FDA Maryland; 2012.
MacDermott AB. Glutamate and GABA: a painful combination. Neuron. 2001;32(3):376–8.
CAS
PubMed
Google Scholar
Bardoni R, Takazawa T, Tong CK, Choudhury P, Scherrer G, Macdermott AB. Pre- and postsynaptic inhibitory control in the spinal cord dorsal horn. Ann N Y Acad Sci. 2013;1279:90–6.
CAS
PubMed
Google Scholar
Zeilhofer HU, Wildner H, Yevenes GE. Fast synaptic inhibition in spinal sensory processing and pain control. Physiol Rev. 2012;92(1):193–235.
CAS
PubMed
PubMed Central
Google Scholar
Coull JA, Boudreau D, Bachand K, Prescott SA, Nault F, Sik A, et al. Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature. 2003;424(6951):938–42.
CAS
PubMed
Google Scholar
Li Z, Taylor CP, Weber M, Piechan J, Prior F, Bian F, et al. Pregabalin is a potent and selective ligand for alpha(2)delta-1 and alpha(2)delta-2 calcium channel subunits. Eur J Pharmacol. 2011;667(1–3):80–90.
CAS
PubMed
Google Scholar
Patel R, Bauer CS, Nieto-Rostro M, Margas W, Ferron L, Chaggar K, et al. alpha2delta-1 gene deletion affects somatosensory neuron function and delays mechanical hypersensitivity in response to peripheral nerve damage. J Neurosci. 2013;33(42):16412–26.
CAS
PubMed
PubMed Central
Google Scholar
Field MJ, Cox PJ, Stott E, Melrose H, Offord J, Su TZ, et al. Identification of the alpha2-delta-1 subunit of voltage-dependent calcium channels as a molecular target for pain mediating the analgesic actions of pregabalin. Proc Natl Acad Sci USA. 2006;103(46):17537–42.
CAS
PubMed
Google Scholar
Ben-Menachem E. Pregabalin pharmacology and its relevance to clinical practice. Epilepsia. 2004;45(Suppl 6):13–8.
CAS
PubMed
Google Scholar
Hong T, Han S, Lee J, Jeon S, Yim DS. Comparison of oral absorption models for pregabalin: usefulness of transit compartment model. Drug Des, Dev Ther. 2016;10:3995–4003.
CAS
Google Scholar
Bockbrader HN, Radulovic LL, Posvar EL, Strand JC, Alvey CW, Busch JA, et al. Clinical pharmacokinetics of pregabalin in healthy volunteers. J Clin Pharmacol. 2010;50(8):941–50.
CAS
PubMed
Google Scholar
Bockbrader HN, Burger P, Knapp L, Corrigan BW. Population pharmacokinetics of pregabalin in healthy subjects and patients with chronic pain or partial seizures. Epilepsia. 2011;52(2):248–57.
CAS
PubMed
Google Scholar
Satoh J, Yagihashi S, Baba M, Suzuki M, Arakawa A, Yoshiyama T. Efficacy and safety evaluation of pregabalin treatment over 52 weeks in patients with diabetic neuropathic pain extended after a double-blind placebo-controlled trial. J Diabetes Investig. 2011;2(6):457–63.
CAS
PubMed
PubMed Central
Google Scholar
Satoh J, Yagihashi S, Baba M, Suzuki M, Arakawa A, Yoshiyama T, et al. Efficacy and safety of pregabalin for treating neuropathic pain associated with diabetic peripheral neuropathy: a 14 week, randomized, double-blind, placebo-controlled trial. Diabetic Med J Br Diabetic Assoc. 2011;28(1):109–16.
CAS
Google Scholar
Zaccara G, Gangemi P, Perucca P, Specchio L. The adverse event profile of pregabalin: a systematic review and meta-analysis of randomized controlled trials. Epilepsia. 2011;52(4):826–36.
CAS
PubMed
Google Scholar
Parsons B, Emir B. Glycemic and serum lipid control in patients with painful diabetic peripheral neuropathy treated with pregabalin. J Diabetes Complicat. 2017;31(2):489–93.
PubMed
Google Scholar
Verma V, Singh N, Singh Jaggi A. Pregabalin in neuropathic pain: evidences and possible mechanisms. Curr Neuropharmacol. 2014;12(1):44–56.
CAS
PubMed
PubMed Central
Google Scholar
Rosenstock J, Tuchman M, LaMoreaux L, Sharma U. Pregabalin for the treatment of painful diabetic peripheral neuropathy: a double-blind, placebo-controlled trial. Pain. 2004;110(3):628–38.
CAS
PubMed
Google Scholar
Lesser H, Sharma U, LaMoreaux L, Poole RM. Pregabalin relieves symptoms of painful diabetic neuropathy: a randomized controlled trial. Neurology. 2004;63(11):2104–10.
CAS
PubMed
Google Scholar
Richter RW, Portenoy R, Sharma U, Lamoreaux L, Bockbrader H, Knapp LE. Relief of painful diabetic peripheral neuropathy with pregabalin: a randomized, placebo-controlled trial. J Pain. 2005;6(4):253–60.
CAS
PubMed
Google Scholar
Freynhagen R, Strojek K, Griesing T, Whalen E, Balkenohl M. Efficacy of pregabalin in neuropathic pain evaluated in a 12-week, randomised, double-blind, multicentre, placebo-controlled trial of flexible- and fixed-dose regimens. Pain. 2005;115(3):254–63.
CAS
PubMed
Google Scholar
Zhang SS, Wu Z, Zhang LC, Zhang Z, Chen RP, Huang YH, et al. Efficacy and safety of pregabalin for treating painful diabetic peripheral neuropathy: a meta-analysis. Acta Anaesthesiol Scand. 2015;59(2):147–59.
CAS
PubMed
Google Scholar
Tassone DM, Boyce E, Guyer J, Nuzum D. Pregabalin: a novel gamma-aminobutyric acid analogue in the treatment of neuropathic pain, partial-onset seizures, and anxiety disorders. Clin Ther. 2007;29(1):26–48.
CAS
PubMed
Google Scholar
Gilron I, Wajsbrot D, Therrien F, Lemay J. Pregabalin for peripheral neuropathic pain: a multicenter, enriched enrollment randomized withdrawal placebo-controlled trial. Clin J Pain. 2011;27(3):185–93.
PubMed
Google Scholar
Serpell M, Latymer M, Almas M, Ortiz M, Parsons B, Prieto R. Neuropathic pain responds better to increased doses of pregabalin: an in-depth analysis of flexible-dose clinical trials. J Pain Res. 2017;10:1769–76.
PubMed
PubMed Central
Google Scholar
Bansal D, Bhansali A, Hota D, Chakrabarti A, Dutta P. Amitriptyline vs. pregabalin in painful diabetic neuropathy: a randomized double blind clinical trial. Diabet Med. 2009;26(10):1019–26.
CAS
PubMed
Google Scholar
Boyle J, Eriksson ME, Gribble L, Gouni R, Johnsen S, Coppini DV, et al. Randomized, placebo-controlled comparison of amitriptyline, duloxetine, and pregabalin in patients with chronic diabetic peripheral neuropathic pain: impact on pain, polysomnographic sleep, daytime functioning, and quality of life. Diabetes Care. 2012;35(12):2451–8.
CAS
PubMed
PubMed Central
Google Scholar
Quilici S, Chancellor J, Löthgren M, Simon D, Said G, Le TK, et al. Meta-analysis of duloxetine vs pregabalin and gabapentin in the treatment of diabetic peripheral neuropathic pain. BMC Neurol. 2009;9(1):6.
PubMed
PubMed Central
Google Scholar
Finnerup NB, Otto M, McQuay HJ, Jensen TS, Sindrup SH. Algorithm for neuropathic pain treatment: an evidence based proposal. Pain. 2005;118(3):289–305.
CAS
PubMed
Google Scholar
de Salas-Cansado M, Pérez C, Saldaña MT, Navarro A, González-Gómez FJ, Ruiz L, et al. An economic evaluation of pregabalin versus usual care in the management of community-treated patients with refractory painful diabetic peripheral neuropathy in primary care settings. Primary Care Diabetes. 2012;6(4):303–12.
PubMed
Google Scholar
Rodríguez MJ, Díaz S, Vera-Llonch M, Dukes E, Rejas J. Cost-effectiveness analysis of pregabalin versus gabapentin in the management of neuropathic pain due to diabetic polyneuropathy or post-herpetic neuralgia. Curr Med Res Opin. 2007;23(10):2585–96.
PubMed
Google Scholar
Iqbal Z, Azmi S, Yadav R, Ferdousi M, Kumar M, Cuthbertson DJ, et al. Diabetic peripheral neuropathy: epidemiology, diagnosis, and pharmacotherapy. Clin Ther. 2018;40(6):828–49.
PubMed
Google Scholar
Tesfaye S, Wilhelm S, Lledo A, Schacht A, Tolle T, Bouhassira D, et al. Duloxetine and pregabalin: high-dose monotherapy or their combination? The “COMBO-DN study”—a multinational, randomized, double-blind, parallel-group study in patients with diabetic peripheral neuropathic pain. Pain. 2013;154(12):2616–25.
CAS
PubMed
Google Scholar
Bouhassira D, Wilhelm S, Schacht A, Perrot S, Kosek E, Cruccu G, et al. Neuropathic pain phenotyping as a predictor of treatment response in painful diabetic neuropathy: data from the randomized, double-blind, COMBO-DN study. Pain®. 2014;155(10):2171–9.
Google Scholar
Rolim LC, Koga da Silva EM, De Sá JR, Dib SA. A systematic review of treatment of painful diabetic neuropathy by pain phenotype versus treatment based on medical comorbidities. Front Neurol. 2017;8:285.
PubMed
PubMed Central
Google Scholar
Boyle J, Eriksson MEV, Gribble L, Gouni R, Johnsen S, Coppini DV, et al. Randomized, placebo-controlled comparison of amitriptyline, duloxetine, and pregabalin in patients with chronic diabetic peripheral neuropathic pain. Impact on pain, polysomnographic sleep, daytime functioning, and quality of life. 2012.
Baron R, Mayoral V, Leijon G, Binder A, Steigerwald I, Serpell M. Efficacy and safety of combination therapy with 5% lidocaine medicated plaster and pregabalin in post-herpetic neuralgia and diabetic polyneuropathy. Curr Med Res Opin. 2009;25(7):1677–87.
CAS
PubMed
Google Scholar
Zin CS, Nissen LM, O’Callaghan JP, Duffull SB, Smith MT, Moore BJ. A randomized, controlled trial of oxycodone versus placebo in patients with postherpetic neuralgia and painful diabetic neuropathy treated with pregabalin. J Pain. 2010;11(5):462–71.
CAS
PubMed
Google Scholar
Tarride JE, Gordon A, Vera-Llonch M, Dukes E, Rousseau C. Cost-effectiveness of pregabalin for the management of neuropathic pain associated with diabetic peripheral neuropathy and postherpetic neuralgia: a Canadian perspective. Clin Ther. 2006;28(11):1922–34.
CAS
PubMed
Google Scholar
Galer BS, Gianas A, Jensen MP. Painful diabetic polyneuropathy: epidemiology, pain description, and quality of life. Diabetes Res Clin Pract. 2000;47(2):123–8.
CAS
PubMed
Google Scholar
Benbow SJ, Wallymahmed ME, Macfarlane IA. Diabetic peripheral neuropathy and quality of life. QJM Mon J Assoc Phys. 1998;91(11):733–7.
CAS
Google Scholar
Atkinson JH, Ancoli-Israel S, Slater MA, Garfin SR, Dillin JC. Subjective sleep disturbance in chronic back pain. Clin J Pain. 1988;4(4):225–32.
Google Scholar
Morin CM, Gibson D, Wade J. Self-reported sleep and mood disturbance in chronic pain patients. Clin J Pain. 1998;14(4):311–4.
CAS
PubMed
Google Scholar
Pilowsky I, Crettenden I, Townley M. Sleep disturbance in pain clinic patients. Pain. 1985;23(1):27–33.
CAS
PubMed
Google Scholar
Banks SM, Kerns RD. Explaining high rates of depression in chronic pain: a diathesis-stress framework. Psychol Bull. 1996;119(1):95–110.
Google Scholar
Dworkin RH, Gitlin MJ. Clinical aspects of depression in chronic pain patients. Clin J Pain. 1991;7(2):79–94.
CAS
PubMed
Google Scholar
Fishbain DA, Cutler R, Rosomoff HL, Rosomoff RS. Chronic pain-associated depression: antecedent or consequence of chronic pain? A review. Clin J Pain. 1997;13(2):116–37.
CAS
PubMed
Google Scholar
Sullivan MJL, Reesor K, Mikail S, Fisher R. The treatment of depression in chronic low back pain: review and recommendations. Pain. 1992;50(1):5–13.
CAS
PubMed
Google Scholar
McWilliams LA, Cox BJ, Enns MW. Mood and anxiety disorders associated with chronic pain: an examination in a nationally representative sample. Pain. 2003;106(1–2):127–33.
PubMed
Google Scholar
Greenblatt HK, Greenblatt DJ. Gabapentin and pregabalin for the treatment of anxiety disorders. Clin Pharmacol Drug Dev. 2018;7(3):228–32.
CAS
PubMed
Google Scholar
Ogawa S, Arakawa A, Hayakawa K, Yoshiyama T. Pregabalin for neuropathic pain: why benefits could be expected for multiple pain conditions. Clin Drug Investig. 2016;36(11):877–88.
CAS
PubMed
Google Scholar
Ogawa S, Suzuki M, Arakawa A, Araki S, Yoshiyama T. Evaluation of the efficacy and safety of pregabalin in the treatment of postherpetic neuralgia: a randomized, double-blind, multicenter, placebo-controlled study. J Jpn Soc Pain Clin. 2010;17:141–52.
Google Scholar
Cardenas DD, Nieshoff EC, Suda K, Goto S, Sanin L, Kaneko T, et al. A randomized trial of pregabalin in patients with neuropathic pain due to spinal cord injury. Neurology. 2013;80(6):533–9.
CAS
PubMed
PubMed Central
Google Scholar
Baron R, Brunnmuller U, Brasser M, May M, Binder A. Efficacy and safety of pregabalin in patients with diabetic peripheral neuropathy or postherpetic neuralgia: open-label, non-comparative, flexible-dose study. Eur J Pain (London, England). 2008;12(7):850–8.
CAS
Google Scholar
Hwang S, van Nooten F, Wells T, Ryan A, Crawford B, Evans C, et al. Neuropathic pain: a patient-centred approach to measuring outcomes. Health expectations: an international journal of public participation in health care and health policy. 2018.
Zelman DC, Brandenburg NA, Gore M. Sleep impairment in patients with painful diabetic peripheral neuropathy. Clin J Pain. 2006;22(8):681–5.
PubMed
Google Scholar
Sivertsen B, Lallukka T, Petrie KJ, Steingrimsdottir OA, Stubhaug A, Nielsen CS. Sleep and pain sensitivity in adults. Pain. 2015;156(8):1433–9.
PubMed
Google Scholar
Hagenauer MH, Crodelle JA, Piltz SH, Toporikova N, Ferguson P, Booth V. The Modulation of pain by circadian and sleep-dependent processes: a review of the experimental evidence. bioRxiv. 2017.
Gilron I, Bailey JM, Tu D, Holden RR, Weaver DF, Houlden RL. Morphine, gabapentin, or their combination for neuropathic. Pain. 2005;352(13):1324–34.
CAS
Google Scholar
Gilron I, Bailey JM, Tu D, Holden RR, Jackson AC, Houlden RL. Nortriptyline and gabapentin, alone and in combination for neuropathic pain: a double-blind, randomised controlled crossover trial. Lancet. 2009;374(9697):1252–61.
CAS
PubMed
Google Scholar
Gilron I, Bailey JM, Vandenkerkhof EG. Chronobiological characteristics of neuropathic pain: clinical predictors of diurnal pain rhythmicity. Clin J Pain. 2013;29(9):755–9.
PubMed
Google Scholar
Horner RL, Peever JH. Brain circuitry controlling sleep and wakefulness. Continuum (Minneap Minn). 2017;23(4, Sleep Neurology):955–72.
PubMed
Google Scholar
Taylor BK, Westlund KN. The noradrenergic locus coeruleus as a chronic pain generator. J Neurosci Res. 2017;95(6):1336–46.
CAS
PubMed
Google Scholar
Brightwell JJ, Taylor BK. Noradrenergic neurons in the locus coeruleus contribute to neuropathic pain. Neuroscience. 2009;160(1):174–85.
CAS
PubMed
PubMed Central
Google Scholar
Garcia-Recio S, Gascón P. Biological and pharmacological aspects of the NK1-receptor. Biomed Res Int. 2015;2015:495704.
PubMed
PubMed Central
Google Scholar
Muto Y, Sakai A, Sakamoto A, Suzuki H. Activation of NK(1) receptors in the locus coeruleus induces analgesia through noradrenergic-mediated descending inhibition in a rat model of neuropathic pain. Br J Pharmacol. 2012;166(3):1047–57.
CAS
PubMed
PubMed Central
Google Scholar
Hayashida K, Obata H, Nakajima K, Eisenach JC. Gabapentin acts within the locus coeruleus to alleviate neuropathic pain. Anesthesiology. 2008;109(6):1077–84.
CAS
PubMed
PubMed Central
Google Scholar
Lampl C, Schweiger C, Haider B, Lechner A. Pregabalin as mono- or add-on therapy for patients with refractory chronic neuropathic pain: a post-marketing prescription-event monitoring study. J Neurol. 2010;257(8):1265–73.
PubMed
Google Scholar
Ferini-Strambi L. Neuropathic pain and sleep: a review. Pain Ther. 2017;6(Suppl 1):19–23.
PubMed
PubMed Central
Google Scholar
Vinik A, Emir B, Parsons B, Cheung R. Prediction of pregabalin-mediated pain response by severity of sleep disturbance in patients with painful diabetic neuropathy and post-herpetic neuralgia. Pain Med. 2014;15(4):661–70.
PubMed
Google Scholar
Roth T, van Seventer R, Murphy TK. The effect of pregabalin on pain-related sleep interference in diabetic peripheral neuropathy or postherpetic neuralgia: a review of nine clinical trials. Curr Med Res Opin. 2010;26(10):2411–9.
CAS
PubMed
Google Scholar
Coppini D. New NICE guidelines on diabetic foot disease prevention and management. Pract Diabetes. 2015;32(8):283.
Google Scholar
Richardson C, Glenn S, Nurmikko T, Horgan M. Incidence of phantom phenomena including phantom limb pain 6 months after major lower limb amputation in patients with peripheral vascular disease. Clin J Pain. 2006;22(4):353–8.
PubMed
Google Scholar
Mortimer CM, Steedman WM, McMillan IR, Martin DJ, Ravey J. Patient information on phantom limb pain: a focus group study of patient experiences, perceptions and opinions. Health Educ Res. 2002;17(3):291–304.
CAS
PubMed
Google Scholar
van der Schans CP, Geertzen JH, Schoppen T, Dijkstra PU. Phantom pain and health-related quality of life in lower limb amputees. J Pain Symptom Manage. 2002;24(4):429–36.
PubMed
Google Scholar
Vanross ER, Johnson S, Abbott CA. Effects of early mobilization on unhealed dysvascular transtibial amputation stumps: a clinical trial. Arch Phys Med Rehabil. 2009;90(4):610–7.
PubMed
Google Scholar
McCormick Z, Chang-Chien G, Marshall B, Huang M, Harden RN. Phantom limb pain: a systematic neuroanatomical-based review of pharmacologic treatment. Pain Medicine. 2014;15(2):292–305.
PubMed
Google Scholar
Chen J, Li L, Chen SR, Chen H, Xie JD, Sirrieh RE, et al. The alpha2delta-1-NMDA receptor complex is critically involved in neuropathic pain development and gabapentin therapeutic actions. Cell Rep. 2018;22(9):2307–21.
CAS
PubMed
PubMed Central
Google Scholar
Bauer CS, Nieto-Rostro M, Rahman W, Tran-Van-Minh A, Ferron L, Douglas L, et al. The increased trafficking of the calcium channel subunit alpha2delta-1 to presynaptic terminals in neuropathic pain is inhibited by the alpha2delta ligand pregabalin. J Neurosci. 2009;29(13):4076–88.
CAS
PubMed
Google Scholar
Daiichi-Sankyo. Mirogabalin 2018. https://www.daiichisankyo.com/media_investors/media_relations/press_releases/detail/006800.html.
Vinik A, Rosenstock J, Sharma U, Feins K, Hsu C, Merante D. Efficacy and safety of mirogabalin (DS-5565) for the treatment of diabetic peripheral neuropathic pain: a randomized, double-blind, placebo- and active comparator-controlled, adaptive proof-of-concept phase 2 study. Diabetes Care. 2014;37(12):3253–61.
CAS
PubMed
Google Scholar
Fischer TZ, Waxman SG. Familial pain syndromes from mutations of the NaV1.7 sodium channel. Ann N Y Acad Sci. 2010;1184:196–207.
CAS
PubMed
Google Scholar
A Clinical Trial To Evaluate PF-05089771 on its own and as an Add-on Therapy to Pregabalin (Lyrica) for the Treatment of Pain due to Diabetic Peripheral Neuropathy (DPN). 2014 [cited 2018 June 28]. http://clinicaltrials.gov/ct2/show/NCT02215252?term=PF-05089771&rank=8.
Convergence Pharmaceuticals. Convergence Pharmaceuticals’ Novel Nav1.7 Selective Sodium Channel Blocker CNV1014802 Demonstrates Proof of Concept in Second Neuropathic Pain Study in Lumbosacral Radiculopathy 2014 [cited 2018 June 28]. http://www.convergencepharma.com/userfiles/file/140923_LSR_FINAL.pdf.
Winters CS, Yang M, Chen H. Pharmaceutical compositions of spiro-oxindole compound for topical administration and their use as therapeutic agents. PCT Int Apple WO2011106729. 2011.
Sumitomo Dainippon Pharma Co Ltd. Profile of Major Products under Development. http://www.ds-pharma.com/rd/clinical/pipeline_profile.html.
Kwong K, Webb EF, Hunsberger GE, et al. Pharmacological characterisation of GSK2339345, a novel voltage-gated sodium channel blocker for the symptomatic relief of cough. Am J Resp Grit Care Med. 2013;187:A4936.
Google Scholar
ClinicalTrials.gov; U.S. National Institutes of Health: GS-6615 2015. https://clinicaltrials.gov/ct2/results?term=GS6615&Search=Search.
Specialist Pharmacy Service NHS. Mirogabalin 2017. https://www.sps.nhs.uk/medicines/mirogabalin/.
Kato M, Tajima N, Shimizu T, Sugihara M, Furihata K, Harada K, et al. Pharmacokinetics and safety of a single oral dose of mirogabalin in Japanese subjects with varying degrees of renal impairment. J Clin Pharmacol. 2018;58(1):57–63.
CAS
PubMed
Google Scholar
Mu Y, Liu X, Li Q, Chen K, Liu Y, Lv X, et al. Efficacy and safety of pregabalin for painful diabetic peripheral neuropathy in a population of Chinese patients: a randomized placebo-controlled trial. J Diabetes. 2018;10(3):256–65.
CAS
PubMed
Google Scholar
Huffman C, Stacey BR, Tuchman M, Burbridge C, Li C, Parsons B, et al. Efficacy and safety of pregabalin in the treatment of patients with painful diabetic peripheral neuropathy and pain on walking. Clin J Pain. 2015;31(11):946–58.
PubMed
Google Scholar
Raskin P, Huffman C, Yurkewicz L, Pauer L, Scavone JM, Yang R, et al. Pregabalin in patients with painful diabetic peripheral neuropathy using an NSAID for other pain conditions: a double-blind crossover study. Clin J Pain. 2016;32(3):203–10.
PubMed
Google Scholar
Raskin P, Huffman C, Toth C, Asmus MJ, Messig M, Sanchez RJ, et al. Pregabalin in patients with inadequately treated painful diabetic peripheral neuropathy: a randomized withdrawal trial. Clin J Pain. 2014;30(5):379–90.
PubMed
Google Scholar
Satoh J, Yagihashi S, Baba M, Suzuki M, Arakawa A, Yoshiyama T, et al. Efficacy and safety of pregabalin for treating neuropathic pain associated with diabetic peripheral neuropathy: a 14 week, randomized, double-blind, placebo-controlled trial. Diabet Med. 2010;28(1):109–16.
Google Scholar
Guan Y, Ding X, Cheng Y, Fan D, Tan L, Wang Y, et al. Efficacy of pregabalin for peripheral neuropathic pain: results of an 8-week, flexible-dose, double-blind, placebo-controlled study conducted in China. Clin Ther. 2011;33(2):159–66.
CAS
PubMed
Google Scholar
Parsons B, Li C. The efficacy of pregabalin in patients with moderate and severe pain due to diabetic peripheral neuropathy. Curr Med Res Opin. 2016;32(5):929–37.
CAS
PubMed
Google Scholar
Freeman R, Emir B, Parsons B. Predictors of placebo response in peripheral neuropathic pain: insights from pregabalin clinical trials. J Pain Res. 2015;8:257–68.
CAS
PubMed
PubMed Central
Google Scholar
Freeman R, Durso-Decruz E, Emir B. Efficacy, safety, and tolerability of pregabalin treatment for painful diabetic peripheral neuropathy: findings from seven randomized, controlled trials across a range of doses. Diabetes Care. 2008;31(7):1448–54.
CAS
PubMed
PubMed Central
Google Scholar
Freynhagen R, Serpell M, Emir B, Whalen E, Parsons B, Clair A, et al. A comprehensive drug safety evaluation of pregabalin in peripheral neuropathic pain. Pain Pract. 2015;15(1):47–57.
PubMed
Google Scholar
Semel D, Murphy TK, Zlateva G, Cheung R, Emir B. Evaluation of the safety and efficacy of pregabalin in older patients with neuropathic pain: results from a pooled analysis of 11 clinical studies. BMC Family Practice. 2010;11:85.
PubMed
PubMed Central
Google Scholar
Moon DE, Lee DI, Lee SC, Song SO, Yoon DM, Yoon MH, et al. Efficacy and tolerability of pregabalin using a flexible, optimized dose schedule in Korean patients with peripheral neuropathic pain: a 10-week, randomized, double-blind, placebo-controlled, multicenter study. Clin Ther. 2010;32(14):2370–85.
CAS
PubMed
Google Scholar
Arezzo JC, Rosenstock J, LaMoreaux L, Pauer L. Efficacy and safety of pregabalin 600 mg/d for treating painful diabetic peripheral neuropathy: a double-blind placebo-controlled trial. BMC Neurol. 2008;8:33.
PubMed
PubMed Central
Google Scholar
Tölle T, Freynhagen R, Versavel M, Trostmann U, Young JP. Pregabalin for relief of neuropathic pain associated with diabetic neuropathy: a randomized, double-blind study. Eur J Pain. 2012;12(2):203–13.
Google Scholar