Ardyna, M., and K.R. Arrigo. 2020. Phytoplankton dynamics in a changing Arctic Ocean. Nature Clinical Practice Endocrinology & Metabolism 10: 892–903.
CAS
Google Scholar
Babin, M., A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski. 2003. Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration. Limnology and Oceanography 48: 843–859.
Google Scholar
Banas, N., J. Zhang, R. Campbell, R. Sambrotto, M. Lomas, E. Sherr, B. Sherr, C. Ashjian, et al. 2016. Spring plankton dynamics in the Eastern Bering Sea, 1971–2050: Mechanisms of interannual variability diagnosed with a numerical model. Journal of Geophysical Research: Oceans 121: 1476–1501.
Google Scholar
Barros, M., M. Pedersén, P. Colepicolo, and P. Snoeijs. 2003. Self-shading protects phytoplankton communities against H2O2-induced oxidative damage. Aquatic Microbial Ecology 30: 275–282.
Google Scholar
Bintanja, R., and A. Olivier. 2017. Towards a rain-dominated Arctic. Nature Climate Change 7: 263–267.
Google Scholar
Briegleb, B. P. and Light, B. 2007. A delta-Eddington multiple scattering parameterization for solar radiation in the sea ice component of the community climate system model, NCAR/TN-472+STR.
Brierley, A.S., and M.J. Cox. 2010. Shapes of krill swarms and fish schools emerge as aggregation members avoid predators and access oxygen. Current Biology 20: 1758–1762.
CAS
Google Scholar
Carder, K., R. Steward, G. Harvey, and P. Ortner. 1989. Marine humic and fulvic acids: Their effects on remote sensing of ocean chlorophyll. Limnology and Oceanography 34: 68–81.
CAS
Google Scholar
Castellani, G., M. Losch, B.A. Lange, and H. Flores. 2017. Modeling Arctic sea-ice algae: Physical drivers of spatial distribution and algae phenology. Journal of Geophysical Research Oceans. https://doi.org/10.1002/2017JC012828.
Article
Google Scholar
Castellani, G., F.L. Schaafsma, S. Arndt, B.A. Lange, I. Peeken, J. Ehrlich, C. David, R. Ricker, et al. 2020. Large-scale variability of physical and biological sea-ice properties in polar oceans. Frontiers in Marine Science 7: 536. https://doi.org/10.3389/fmars.2020.00536.
Article
Google Scholar
Chase, A., E. Boss, R. Zaneveld, A. Bricaud, H. Claustre, J. Ras, G. Dall’Olmo, and T.K. Westberry. 2013. Decomposition of in situ particulate absorption spectra. Methods in Oceanography 7: 110–124.
Google Scholar
Dall’Olmo, G., T. Westberry, M. Behrenfeld, E. Boss, and W. Slade. 2009. Significant contribution of large particles to optical backscattering in the open ocean. Biogeosciences 6: 947–967.
Google Scholar
Degerlund, M., and H.C. Eilertsen. 2010. Main species characteristics of phytoplankton spring blooms in NE Atlantic and Arctic waters (68–80 N). Estuaries and Coasts 33: 242–269.
CAS
Google Scholar
Eyring, V., S. Bony, G.A. Meehl, C.A. Senior, B. Stevens, R.J. Stouffer, and K.E. Taylor. 2016. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geoscience Model Development 9: 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016.
Article
Google Scholar
Frey, K.E., D.K. Perovich, and B. Light. 2011. The spatial distribution of solar radiation under a melting Arctic sea ice cover. Geophysical Research Letters. https://doi.org/10.1029/2011GL049421.
Article
Google Scholar
Gregg, W., and K. Carder. 1990. A simple spectral solar irradiance model for cloudless maritime atmospheres. Limnology and Oceanography 35: 1657–1675.
Google Scholar
Grenfell, T.C., and G.A. Maykut. 1977. The optical properties of ice and snow in the arctic basin. Journal of Glaciology 18: 445–463.
Google Scholar
Hansen, A.N., and A.W. Visser. 2016. Carbon export by vertically migrating zooplankton. Limnology and Oceanography 61: 701–710.
Google Scholar
Hoag, H. 2017. Nations agree to ban fishing in Arctic Ocean for at least 16 years. Science. https://doi.org/10.1126/science.aar6437.
Article
Google Scholar
Hobbs, L., N.S. Banas, F.R. Cottier, J. Berge, and M. Daase. 2020. Eat or sleep: Availability of winter prey explains mid-winter and spring activity in an Arctic Calanus population. Frontiers in Marine Science 7: 541564. https://doi.org/10.3389/fmars.2020.541564.
Article
Google Scholar
Hobbs, L., N.S. Banas, J.H. Cohen, F.R. Cottier, J. Berge, and Ø. Varpe. 2021. A marine zooplankton community vertically structured by light across diel to interannual timescales. Biology Letters 17: 20200810.
Google Scholar
Holland, M.M., D.A. Bailey, B.P. Briegleb, B. Light, and E. Hunke. 2012. Improved sea ice shortwave radiation physics in CCSM4: The impact of melt ponds and aerosols on arctic sea ice. Journal of Climate 25: 1413–1430.
Google Scholar
Horvat, C., D.R. Jones, and S., Iams, Schroeder, D., Flocco, D., Feltham, D. 2017. The frequency and extent of sub-ice phytoplankton blooms in the Arctic Ocean. Science Advances 3: 3.
Google Scholar
Irigoien, X., T. Klevjer, A. Røstad, U. Martinez, G. Boyra, J.L. Acuña, A. Bode, F. Echevarria, et al. 2014. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nature Communications 5: 3271.
Google Scholar
Katlein, C., S. Arndt, H.J. Belter, G. Castellani, and M. Nicolaus. 2019. Seasonal evolution of light transmission distributions through Arctic Sea Ice. Journal of Geophysical Research: Oceans 124: 5418–5435. https://doi.org/10.1029/2018jc014833.
Article
Google Scholar
Katlein, C., J.-P. Langelier, A. Ouellet, F. Lévesque-Desrosiers, Q. Hisette, B.A. Lange, S. Lambert-Girard, M. Babin, and S. Thibault. 2021. Under Revision. The three-dimensional light field within sea ice ridges. Earth and Space Science Open Archive. https://doi.org/10.1002/essoar.10506296.2.
Article
Google Scholar
Kasten, F., and G. Czeplak. 1980. Solar and terrestrial radiation dependent on the amount and type of cloud. Solar Energy 24: 177–189.
Google Scholar
Kirk, J.T. 1994. Light and photosynthesis in aquatic ecosystems. Cambridge University Press.
Klein, K., H. Lantuit, B. Heim, F. Fell, D. Doxaran, and A. Irrgang. 2019. Long-term high-resolution sediment and sea surface temperature spatial patterns in Arctic Nearshore waters retrieved using 30-year landsat archive imagery. Remote Sensing 11: 2791.
Google Scholar
Langbehn, T.J., and Ø. Varpe. 2017. Sea-ice loss boosts visual search: Fish foraging and changing pelagic interactions in polar oceans. Global Change Biology 23: 5318–5330.
Google Scholar
Lannuzel, D., L. Tedesco, M. van Leeuwe, K. Campbell, H. Flores, B. Delille, L. Miller, J. Stefels, et al. 2020. The future of Arctic sea-ice biogeochemistry and ice-associated ecosystems. Nature Clinical Practice Endocrinology & Metabolism 10: 983–992.
Google Scholar
Light, B., T.C. Grenfell, and D.K. Perovich. 2008. Transmission and absorption of solar radiation by Arctic sea ice during the melt season. Journal of Geophysical Research-Oceans. https://doi.org/10.1029/2006jc003977.
Article
Google Scholar
Light, B., D.K. Perovich, M.A. Webster, C. Polashenski, and R. Dadic. 2015. Optical properties of melting first-year Arctic sea ice. Journal of Geophysical Research: Oceans 120: 7657–7675. https://doi.org/10.1002/2015JC011163.
Article
Google Scholar
Lo Prejato, M., D. McKee, and C. Mitchell. 2020. Inherent optical properties: Reflectance relationships revisited. Journal of Geophysical Research: Oceans 125: 10.
Google Scholar
Macquaker, J., M. Keller, and S. Davies. 2010. Algal Blooms and “marine snow”: Mechanisms that enhance preservation of organic carbon in ancient fine-grained sediments. Journal of Sedimentary Research 80: 934–942.
Google Scholar
Maslanik, J., J. Stroeve, C. Fowler, and W. Emery. 2011. Distribution and trends in Arctic sea ice age through spring 2011. Geophysical Research Letters. https://doi.org/10.1029/2011GL047735.
Article
Google Scholar
Mei, Z., F. Saucier, V. Le Fouest, B. Zakardjian, S. Sennville, H. Xie, and M. Starr. 2010. Modeling the timing of spring phytoplankton bloom and biological production of the Gulf of St. Lawrence (Canada): Effects of colored dissolved organic matter and temperature. Continental Shelf Research 30: 2027–2042.
Google Scholar
Morel, A. 1966. Étude expérimentale de la diffusion de la lumière par l’eau, les solutions de chlorure de sodium et l’eau de mer optiquement pures. Journal De Chimie Physique 63: 1359–1367.
CAS
Google Scholar
Michel, C., L. Legendre, S. Demers, and J.-C. Therriault. 1988. Photoadaptation of sea-ice microalgae in springtime: Photosynthesis and carboxylating enzymes. Marine Ecology Progress Series 50: 177–185.
CAS
Google Scholar
Nicolaus, M., C. Katlein, J. Maslanik, and S. Hendricks. 2012. Changes in Arctic sea ice result in increasing light transmittance and absorption. Geophysical Research Letters 39: L24501. https://doi.org/10.1029/2012gl053738.
Article
Google Scholar
O’Garra, T. 2017. Economic value of ecosystem services, minerals and oil in a melting Arctic: A preliminary assessment. Ecosystem Services 24: 180–186.
Google Scholar
Perovich, D. K. 1996. The optical properties of sea ice, Monograph 96-1.
Perovich, D.K., B. Light, H. Eicken, K.F. Jones, K. Runciman, and S.V. Nghiem. 2007. Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005: Attribution and role in the ice-albedo feedback. Geophysical Research Letters 34: L19505. https://doi.org/10.1029/2007GL031480.
Article
Google Scholar
Pope, R., and E. Fry. 1997. Absorption spectrum (380–700 nm) of pure water II Integrating cavity measurements. Applied Optics 36: 8710.
CAS
Google Scholar
Popova, E.E., A. Yool, A.C. Coward, Y.K. Aksenov, S.G. Alderson, B.A. de Cuevas, and T.R. Anderson. 2010. Control of primary production in the Arctic by nutrients and light: Insights from a high resolution ocean general circulation model. Biogeosciences 7: 3569–3591.
CAS
Google Scholar
Post, E., U.S. Bhatt, C.M. Bitz, J.F. Brodie, T.L. Fulton, M. Hebblewhite, A.J. Kerby, S.J. Kutz, et al. 2013. Ecological consequences of sea-ice decline. Science 341): 519–524.
CAS
Google Scholar
Renaud, P.E., M. Daase, N.S. Banas, T.M. Gabrielsen, J.E. Søreide, Ø. Varpe, F. Cottier, Falk-Petersen, et al. 2018. Pelagic food-webs in a changing Arctic: A trait-based perspective suggests a mode of resilience. ICES Journal of Marine Science. https://doi.org/10.1093/icesjms/fsy063.
Article
Google Scholar
Renner, A.H.H., S. Gerland, C. Haas, G. Spreen, J.F. Beckers, E. Hansen, M. Nicolaus, and H. Goodwin. 2014. Evidence of Arctic sea ice thinning from direct observations. Geophysical Research Letters 41: 5029–5036. https://doi.org/10.1002/2014GL060369.
Article
Google Scholar
Richardson, A. 2008. In hot water: Zooplankton and climate change. ICES Journal of Marine Science 65: 279–295.
Google Scholar
Schourup-Kristensen, V., C. Wekerle, D.A. Wolf-Gladrow, and C. Völker. 2018. Arctic Ocean biogeochemistry in the high resolution FESOM 1.4-REcoM2 model. Progress in Oceanography 168: 65–81. https://doi.org/10.1016/j.pocean.2018.09.006.
Article
Google Scholar
Siegel, D., S. Maritorena, N. Nelson, D. Hansell, and M. Lorenzi-Kayser, M. 2002. Global distribution and dynamics of colored dissolved and detrital organic materials. Journal of Geophysical Research: Oceans, 107(C12): 21-1-21-14.
Slagstad, D., and K. Støle-Hansen. 1991. Dynamics of plankton growth in the Barents Sea: Model studies. Polar Research 10: 173–186.
Google Scholar
Søreide, J.E., E.V. Leu, J. Berge, M. Graeve, and S.T.I.G. Falk-Petersen. 2010. Timing of blooms, algal food quality and Calanus glacialis reproduction and growth in a changing Arctic. Global Change Biology 16: 3154–3163.
Google Scholar
Steiner, N.S., W.W.L. Cheung, A.M. Cisneros-Montemayor, H. Drost, H. Hayashida, C. Hoover, J. Lam, T. Sou, et al. 2019. Impacts of the changing ocean-sea ice system on the key forage fish Arctic cod (Boreogadus saida) and subsistence fisheries in the western Canadian Arctic—Evaluating linked climate, ecosystem and economic (CEE) models. Frontiers in Marine Science 6: 179.
Google Scholar
Stroeve, J., and D. Notz. 2018. Changing state of Arctic sea ice across all seasons. Environmental Research Letters 13: 103001.
Google Scholar
Stroeve, J., M. Vancoppenolle, G. Veyssiere, M. Lebrun, G. Castellani, M. Babin, M. Karcher, J. Landy, et al. 2021. A multi-sensor and modeling approach for mapping light under sea ice during the ice-growth season. Frontiers Marine Science 7: 592337.
Google Scholar
Syvertsen, E.E. 1991. Ice algae in the Barents Sea: Types of assemblages, origin, fate and role in the ice-edge phytoplankton bloom. Polar Research 10: 277–288.
Google Scholar
Tedesco, L., M. Vichi, and E. Scoccimarro. 2019. Sea-ice algal phenology in a warmer Arctic. Science Advance 5: 4830.
Google Scholar
Varpe, Ø., M. Daase, and T. Kristiansen. 2015. A fish-eye view on the new Arctic lightscape. ICES Journal of Marine Science 72: 2532–2538.
Google Scholar
Vernet, M., T.L. Richardson, K. Mefies, E.-M. Nothig, and I. Peeken. 2017. Models of plankton community changes during a warm water anomaly in Arctic waters show altered trophic pathways with minimal changes in carbon export. Frontiers in Marine Science 4: 160.
Google Scholar
Wassmann, P., D. Slagstad, C.W. Riser, and M. Reigstad. 2006. Modelling the ecosystem dynamics of the Barents Sea including the marginal ice zone: II. Carbon flux and interannual variability. Journal of Marine Systems 59: 1–24.
Google Scholar