Advertisement

Ambio

, Volume 47, Issue 5, pp 535–545 | Cite as

Ditch network maintenance in peat-dominated boreal forests: Review and analysis of water quality management options

  • Mika Nieminen
  • Sirpa Piirainen
  • Ulf Sikström
  • Stefan Löfgren
  • Hannu Marttila
  • Sakari Sarkkola
  • Ari Laurén
  • Leena Finér
Review
  • 168 Downloads

Abstract

The objective of this study was to evaluate the potential of different water management options to mitigate sediment and nutrient exports from ditch network maintenance (DNM) areas in boreal peatland forests. Available literature was reviewed, past data reanalyzed, effects of drainage intensity modeled, and major research gaps identified. The results indicate that excess downstream loads may be difficult to prevent. Water protection structures constructed to capture eroded matter are either inefficient (sedimentation ponds) or difficult to apply (wetland buffers). It may be more efficient to decrease erosion, either by limiting peak water velocity (dam structures) or by adjusting ditch depth and spacing to enable satisfactory drainage without exposing the mineral soil below peat. Future research should be directed towards the effects of ditch breaks and adjusted ditch depth and spacing in managing water quality in DNM areas.

Keywords

Drained peatlands Nitrogen Phosphorus Suspended solids Water quality 

References

  1. Ahti, E. 1987. Water balance of drained peatlands on the basis of water table simulation during the snowless period. Communicationes Instituti Forestalis Fenniae 141.Google Scholar
  2. Armstrong, A., J. Holden, P. Kay, B. Francis, M. Foulger, S. Gledhill, A.T. McDonald, and A. Walker. 2010. The impact of peatland drain-blocking on dissolved organic carbon loss and discolouration of water; results from a national survey. Journal of Hydrology 381: 112–120.  https://doi.org/10.1016/j.jhydrol.2009.11.031.CrossRefGoogle Scholar
  3. Åström, M., E.-K. Aaltonen, and J. Koivusaari. 2004. Changes in leaching patterns of nitrogen and phosphorus after artificial drainage of a boreal forest—A paired catchment study in Lappajärvi, western Finland. Boreal Environment Research 10: 67–78.Google Scholar
  4. Carling, P.A., M.S. Glaister, and T.P. Flintham. 1997. The erodibility of upland soils and the design of preafforestation drainage networks in the United Kingdom. Hydrological Processes 11: 1963–1980.CrossRefGoogle Scholar
  5. Carling, P.A., B.J. Irvine, A. Hill, and M. Wood. 2001. Reducing sediment inputs to Scottish streams: A review of the efficiency of soil conservation practices in upland forestry. The Science of the Total Environment 265: 209–227.CrossRefGoogle Scholar
  6. Ecke, F. 2009. Drainage ditching at the catchment scale affects water quality and macrophyte occurrence in Swedish lakes. Freshwater Biology 59: 119–126.  https://doi.org/10.1111/j.1365-2427.2008.02097.x.CrossRefGoogle Scholar
  7. Eggelsmann, R.A.L., G. Heathwaite, E. Grosse-Brauckmann, W. Kuster, M.Schuch Naucke, and V. Schweickle. 1993. Physical processes and properties of mires. In Mires: Process, exploitation and conservation, ed. A.L. Heathwaite, and K.H. Gottlich, 171–262. Chichester: Wiley.Google Scholar
  8. Finnish Statistical Yearbook of Forestry. 2014. Suomen virallinen tilasto: Maa-, metsä- ja kalatalous.Google Scholar
  9. Finér, L., T. Mattsson, S. Joensuu, H. Koivusalo, A. Laurén, T. Makkonen, M. Nieminen, S. Tattari, et al. 2010. A method for calculating nitrogen, phosphorus and sediment load from forested catchments. Suomen ympäristö 10/2010 (in Finnish).Google Scholar
  10. Froster, A. 2016. The fight about the ditch. Hav & Vatten 4: 10–19. ISSN 2002-0252. https://issuu.com/havochvatten/docs/hav1604_e (in Swedish).
  11. Haahti, K., M. Nieminen, L. Finér, H. Marttila, T. Kokkonen, A. Leinonen, and H. Koivusalo. 2017. Model-based evaluation of sediment control in a drained peatland forest after ditch network maintenance. Canadian Journal of Forest Research 48: 130–140.CrossRefGoogle Scholar
  12. Haahti, K., H. Marttila, L. Warsta, T. Kokkonen, L. Finér, and H. Koivusalo. 2016. Modeling sediment transport after ditch network maintenance of a forested peatland. Water Resources Research 52: 9001–9019.  https://doi.org/10.1002/2016WR019442.CrossRefGoogle Scholar
  13. Hånell, B. 1988. Postdrainage forest productivity of peatlands in Sweden. Canadian Journal of Forest Research 18: 1443–1456.CrossRefGoogle Scholar
  14. Hånell, B. 2007. Data based on the National Swedish Forest Inventory and presented by Björn Hånell at a conference 14 November 2007 at the Royal Swedish Academy of Agriculture and Forestry, KSLA.Google Scholar
  15. Hansen, K., V. Kronnäs, T. Zetterberg, M. Zetterberg, F. Moldan, P. Petterson, and J. Munthe. 2013. The effects of ditch cleaning on runoff, water chemistry and botany fauna in forest ecosystems. Rapport. IVL Svenska Miljöinstitutet AB (in Swedish).Google Scholar
  16. Hjulstrom, F. 1935. Studies of morphological activity of rivers as illustrated by the river Fyris. Bulletin of the Geological Institute University of Uppsala 25: 221–527.Google Scholar
  17. Hökkä, H., H. Hyttinen, H. Marttila, J. Jämsen, and B. Klöve. 2011. The effect of the PRC method on volume growth of tree stands in ditch maintenance areas. Silva Fennica 45: 331–339.Google Scholar
  18. Holden, J., M. Gascoign, and N.R. Bosanko. 2007. Erosion and natural revegetation associated with surface land drains in upland peatlands. Earth Surface Processes and Landforms 32: 1547–1557.  https://doi.org/10.1002/esp.1476.CrossRefGoogle Scholar
  19. Hynninen, A., S. Sarkkola, A. Laurén, H. Koivusalo, and M. Nieminen. 2011. Capacity of riparian buffer areas to reduce ammonium export originating from ditch network maintenance areas in peatlands drained for forestry. Boreal Environment Research 16: 430–444.Google Scholar
  20. Joensuu, S., E. Ahti, and M. Vuollekoski. 1999. The effects of peatland forest ditch maintenance on suspended solids in runoff. Boreal Environment Research 4: 343–355.Google Scholar
  21. Joensuu, S., E. Ahti, and M. Vuollekoski. 2002. Effects of ditch network maintenance on the chemistry of run-off water from peatland forests. Scandinavian Journal of Forest Research 17: 238–247.CrossRefGoogle Scholar
  22. Kaila, A., A. Laurén, S. Sarkkola, H. Koivusalo, L. Ukonmaanaho, L. Xiao, Z. Asam, C. O´Driscoll, et al. 2015. The effect of clear-felling and harvest residue removal on nitrogen and phosphorus export from drained Norway spruce mires in southern Finland. Boreal Environment Research 20: 693–706.Google Scholar
  23. Kaila, A., S. Sarkkola, A. Laurén, L. Ukonmaanaho, H. Koivusalo, L. Xiao, C. O’Driscoll, Z. Asam, et al. 2014. Phosphorus export from drained Scots pine mires after clear-felling and bioenergy harvesting. Forest Ecology and Management 325: 99–107.  https://doi.org/10.1016/j.foreco.2014.03.025.CrossRefGoogle Scholar
  24. Kløve, B. 1998. Erosion and sediment delivery from peat mines. Soil & Tillage Research 45: 199–216.CrossRefGoogle Scholar
  25. Koivusalo, H., E. Ahti, A. Laurén, T. Kokkonen, T. Karvonen, R. Nevalainen, and L. Finér. 2008. Impacts of ditch cleaning on hydrological processes in a drained peatland forest. Hydrology and Earth System Science 12: 1211–1227.  https://doi.org/10.5194/hess-12-1211-2008.CrossRefGoogle Scholar
  26. Koskinen, M., T. Sallantaus, and H. Vasander. 2011. Post-restoration development of organic carbon and nutrient leaching from two ecohydrologically different peatland sites. Ecological Engineering 37: 1008–1016.  https://doi.org/10.1016/j.ecoleng.2010.06.036.CrossRefGoogle Scholar
  27. Koskinen, M., T. Tahvanainen, S. Sarkkola, M.W. Menberu, A. Laurén, T. Sallantaus, H. Marttila, A.-K. Ronkanen, et al. 2017. Restoration of fertile peatlands poses a risk for high exports of dissolved organic carbon, nitrogen, and phosphorus. The Science of the Total Environment 586: 858–869.  https://doi.org/10.1016/j.scitotenv.2017.02.065.CrossRefGoogle Scholar
  28. Laiho, R., S. Tuominen, S. Kojola, T. Penttilä, M. Saarinen, and A. Ihalainen. 2016. Forestry-drained peatlands of low productivity in Finland. Metsätieteen aikakauskirja 2: 73–93 (In Finnish).Google Scholar
  29. Liljaniemi, P., K.-M. Vuori, T. Tossavainen, J. Kotanen, M. Haapanen, A. Lepistö, and K. Kenttämies. 2003. Effectiveness of constructed overland flow areas in decreasing diffuse pollution from forest drainages. Environmental Management 32: 602–613.  https://doi.org/10.1007/s00267-003-2927-4.CrossRefGoogle Scholar
  30. Marttila, H., and B. Kløve. 2010a. Dynamics of erosion and suspended sediment transport from drained peatland forestry. Journal of Hydrology 388: 414–425.  https://doi.org/10.1016/j.jhydrol.2010.05.026.CrossRefGoogle Scholar
  31. Marttila, H., and B. Kløve. 2010b. Managing runoff, water quality and erosion in peatland forestry by peak runoff control. Ecological Engineering 36: 900–911.  https://doi.org/10.1016/j.ecoleng.2010.04.002.CrossRefGoogle Scholar
  32. Marttila, H., and B. Kløve. 2015. Spatial and temporal variation in particle size and particulate organic matter content in suspended particulate matter from peatland-dominated catchments in Finland. Hydrological Processes 29: 1069–1079.  https://doi.org/10.1002/hyp.10221.CrossRefGoogle Scholar
  33. Marttila, H., K.-M. Vuori, H. Hökkä, J. Jämsen, and B. Kløve. 2010. Framework for designing and applying peak runoff control structures for peatland forestry conditions. Forest Ecology and Management 260: 1262–1273.  https://doi.org/10.1016/j.foreco.2010.06.032.CrossRefGoogle Scholar
  34. Ministry of Environment of the Republic of Lithuania Department of Forest. 2003. The chronicle of Lithuanian forests XX century. Vilnius 2003: 631.Google Scholar
  35. Nieminen, M. 2003. Effects of clear-cutting and site preparation on water quality from a drained Scots pine mire in southern Finland. Boreal Environment Research 8: 53–59.Google Scholar
  36. Nieminen, M., E. Ahti, H. Nousiainen, S. Joensuu, and M. Vuollekoski. 2005a. Capacity of riparian buffer zones to reduce sediment concentrations in discharge from peatlands drained for forestry. Silva Fennica 39: 331–339.CrossRefGoogle Scholar
  37. Nieminen, M., E. Ahti, H. Nousiainen, S. Joensuu, and M. Vuollekoski. 2005b. Does the use of riparian buffer zones in forest drainage sites to reduce the transport of solids simultaneously increase the export of solutes? Boreal Environment Research 10: 191–201.Google Scholar
  38. Nieminen, M., E. Ahti, H. Koivusalo, T. Mattsson, S. Sarkkola, and A. Laurén. 2010. Export of suspended solids and dissolved elements from peatland areas after ditch network maintenance in south-central Finland. Silva Fennica 44: 39–49.CrossRefGoogle Scholar
  39. Nieminen, M., A. Kaila, M. Koskinen, S. Sarkkola, H. Fritze, E.-S. Tuittila, H. Nousiainen, H. Koivusalo, A. Laurén, H. Ilvesniemi, et al. 2015a. Natural and restored wetland buffers in reducing sediment and nutrient export from forested catchment: Finnish experiences. In The role of natural and constructed wetlands in nutrient cycling and retention on the landscape, ed. J. Vymazal, 57–72. Cham: Springer.Google Scholar
  40. Nieminen, M., M. Koskinen, S. Sarkkola, A. Laurén, A. Kaila, O. Kiikkilä, T.M. Nieminen, and L. Ukonmaanaho. 2015b. Dissolved organic carbon export from harvested peatland forests with differing site characteristics. Water, Air, and Soil pollution 226: 181.  https://doi.org/10.1007/s11270-015-2444-0.CrossRefGoogle Scholar
  41. Paavilainen, E., and J. Päivänen. 1995. Peatland forestry. Ecology and Principles. Berlin: Springer.CrossRefGoogle Scholar
  42. Päivänen, J., and B. Hånell 2012. Peatland ecology and forestry—A Sound Approach, Vol. 3. University of Helsinki, Department of Forest Sciences Publications.Google Scholar
  43. Piirainen, S., L. Finér, E. Andersson, K. Armolaitis, O. Belova, D. Čiuldiené, M. Futter, W. Gil, Z. Glazko, T. Hiltunen, et al. 2017. Forest drainage and water protection in the Baltic Sea Region countries—Current knowledge, methods and needs for development.Google Scholar
  44. Postila, H., J. Saukkoriipi, K. Heikkinen, S.M. Karjalainen, H. Marttila, and B. Kløve. 2014. Can treatment wetlands be constructed on drained peatlands for efficient purification of peat extraction runoff? Geoderma 228–229: 33–43.  https://doi.org/10.1016/j.geoderma.2013.12.008.CrossRefGoogle Scholar
  45. Postila, H., A.-K. Ronkanen, and B. Kløve. 2015. Wintertime purification efficiency of constructed wetlands treating runoff from peat extraction in a cold climate. Ecological Engineering 85: 13–25.  https://doi.org/10.1016/j.ecoleng.2015.09.066.CrossRefGoogle Scholar
  46. Prévost, M., A.P. Plamondon, and P. Belleau. 1999. Effects of drainage of a forested peatland on water quality and quantity. Journal of Hydrology 214: 130–143.  https://doi.org/10.1016/S0022-1694(98)00281-9.CrossRefGoogle Scholar
  47. Ramchunder, S.J., L.E. Brown, and J. Holden. 2009. Environmental effects of drainage, drain-blocking and prescribed vegetation burning in UK upland peatlands. Progress in Physical Geography 33: 49–79.  https://doi.org/10.1177/0309133309105245.CrossRefGoogle Scholar
  48. Sallantaus, T., H. Vasander, and J. Laine. 1998. Prevention of detrimental impacts of forestry operations on water bodies using buffer zones created from drained peatlands. Suo 49: 125–133 (in Finnish).Google Scholar
  49. Sarkkola, S., H. Hökkä, H. Koivusalo, M. Nieminen, E. Ahti, J. Päivänen, and J. Laine. 2010. Role of tree stand evapotranspiration in maintaining satisfactory drainage conditions in drained peatlands. Canadian Journal of Forest Research 40: 1485–1496.  https://doi.org/10.1139/X10-084.CrossRefGoogle Scholar
  50. Sarkkola, S., H. Hökkä, E. Ahti, M. Nieminen, and H. Koivusalo. 2012. Depth of water table prior to ditch network maintenance is a key factor for tree growth response. Scandinavian Journal of Forest Research.  https://doi.org/10.1080/02827581.2012.689004.Google Scholar
  51. Sikström, U., and H. Hökkä. 2016. Interactions between soil water conditions and forest stands in boreal forests with implications for ditch network maintenance. Silva Fennica.  https://doi.org/10.14214/sf.1416.Google Scholar
  52. Silvan, N., T. Sallataus, H. Vasander, and J. Laine. 2005. Hydraulic nutrient transport in a restored peatland buffer. Boreal Environment Research 10: 203–210.Google Scholar
  53. Stenberg, L., T. Tuukkanen, L. Finér, H. Marttila, S. Piirainen, B. Kløve, and H. Koivusalo. 2015. Ditch erosion processes and sediment transport in a drained peatland forest. Ecological Engineering 75: 421–433.  https://doi.org/10.1016/j.ecoleng.2014.11.046.CrossRefGoogle Scholar
  54. Stenberg, L., T. Tuukkanen, L. Finér, H. Marttila, S. Piirainen, B. Kløve, and H. Koivusalo. 2016. Evaluation of erosion and surface roughness in peatland forest ditches using pin meter measurements and terrestrial laser scanning. Earth Surface Processes and Landforms 41: 1299–1311.  https://doi.org/10.1002/esp.3897.CrossRefGoogle Scholar
  55. Tuukkanen, T., B. Kløve, and H. Marttila. 2014. Effect of soil properties on peat erosion and suspended sediment delivery in drained peatlands. Water Resources Research 50: 3523–3535.  https://doi.org/10.1002/2013WR015206.CrossRefGoogle Scholar
  56. Tuukkanen, T., L. Stenberg, L. Finér, H. Marttila, S. Piirainen, H. Koivusalo, and B. Kløve. 2016. Erosion mechanisms and sediment sources in a peatland forest after ditch cleaning. Earth Surface Processes and Landforms 41: 1841–1853.  https://doi.org/10.1002/esp.3951.CrossRefGoogle Scholar
  57. Väänänen, R., M. Nieminen, M. Vuollekoski, H. Nousiainen, T. Sallantaus, E.-S. Tuittila, and H. Ilvesniemi. 2008. Retention of phosphorus in peatland buffer zones at six forested catchments in southern Finland. Silva Fennica 42: 211–231.CrossRefGoogle Scholar
  58. Vasander, H., E.-S. Tuittila, E. Lode, L. Lundin, M. Ilomets, T. Sallantaus, R. Heikkilä, M.-L. Pitkänen, et al. 2003. Status and restoration of peatlands in northern Europe. Wetland Ecology and Management 11: 51–63.  https://doi.org/10.1023/A:1022061622602.CrossRefGoogle Scholar
  59. Vikman, A., S. Sarkkola, H. Koivusalo, T. Sallantaus, J. Laine, N. Silvan, H. Nousiainen, and M. Nieminen. 2010. Nitrogen retention by peatland buffer areas at six forested catchments in southern and central Finland. Hydrobiologia 641: 171–183.  https://doi.org/10.1007/s10750-009-0079-0.CrossRefGoogle Scholar
  60. Wynn, T., and S. Mostaghimi. 2006. The effects of vegetation and soil type on streambank erosion, southwestern Virginia, USA. Journal of the American Water Resources Association.  https://doi.org/10.1111/j.1752-1688.2006.tb03824.x.Google Scholar

Copyright information

© Royal Swedish Academy of Sciences 2018

Authors and Affiliations

  • Mika Nieminen
    • 1
  • Sirpa Piirainen
    • 2
  • Ulf Sikström
    • 3
  • Stefan Löfgren
    • 4
  • Hannu Marttila
    • 5
  • Sakari Sarkkola
    • 1
  • Ari Laurén
    • 2
  • Leena Finér
    • 2
  1. 1.Natural Resources Institute Finland, HelsinkiHelsinkiFinland
  2. 2.Natural Resources Institute Finland, JoensuuJoensuuFinland
  3. 3.The Forestry Research Institute of Sweden (Skogforsk)UppsalaSweden
  4. 4.Department of Aquatic Sciences and AssessmentSwedish University of Agricultural SciencesUppsalaSweden
  5. 5.Water Resources and Environmental Engineering Research UnitUniversity of OuluOuluFinland

Personalised recommendations