Skip to main content

Organic matter export to the seafloor in the Baltic Sea: Drivers of change and future projections

Abstract

The impact of environmental change and anthropogenic stressors on coastal marine systems will strongly depend on changes in the magnitude and composition of organic matter exported from the water column to the seafloor. Knowledge of vertical export in the Baltic Sea is synthesised to illustrate how organic matter deposition will respond to climate warming, climate-related changes in freshwater runoff, and ocean acidification. Pelagic heterotrophic processes are suggested to become more important in a future warmer climate, with negative feedbacks to organic matter deposition to the seafloor. This is an important step towards improved oxygen conditions in the near-bottom layer that will reduce the release of inorganic nutrients from the sediment and hence counteract further eutrophication. The evaluation of these processes in ecosystem models, validated by field observations, will significantly advance the understanding of the system’s response to environmental change and will improve the use of such models in management of coastal areas.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Aberle, N., B. Bauer, A. Lewandowska, U. Gaedke, and U. Sommer. 2012. Warming induces shifts in microzooplankton phenology and reduces time-lags between phytoplankton and protozoan production. Marine Ecology Progress Series 159: 2441–2453.

    Google Scholar 

  • Alheit, J., C. Möllmann, J. Dutz, G. Karnilovs, P. Loewe, V. Mohrholz, and N. Wasmund. 2005. Synchronous ecological regime shifts in the central Baltic and the North Sea in the late 1980s. ICES Journal of Marine Science 62: 1205–1215.

    Article  Google Scholar 

  • Almén, A.K., A. Vehmaa, A. Brutemark, L. Bach, S. Lischka, A. Stuhr, S. Furuhagen, A. Paul, et al. 2016. Negligible effects of ocean acidification on Eurytemora affinis (Copepoda) offspring production. Biogeosciences 13: 1037–1048.

    Article  Google Scholar 

  • Almroth-Rosell, E., K. Eilola, R. Hordoir, H.E.M. Meier, and P.O.J. Hall. 2011. Transport of fresh and resuspended particulate organic material in the Baltic Sea—a model study. Journal of Marine Systems 87: 1–12.

    Article  Google Scholar 

  • Ardyna, M., M. Babin, M. Gosselin, E. Devred, L. Rainville, and J.-E. Tremblay. 2014. Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms. Geophysical Research Letters 41: 6207–6212.

    Article  Google Scholar 

  • Asmala, E., R. Autio, H. Kaartokallio, L. Pitkänen, C.A. Stedmon, and D.N. Thomas. 2013. Bioavailability of riverine dissolved organic matter in three Baltic Sea estuaries and the effect of catchment land use. Biogeosciences 10: 6969–6986.

    CAS  Article  Google Scholar 

  • Asmala, E., D.G. Bowers, R. Autio, H. Kaartokallio, and D.N. Thomas. 2014. Qualitative changes of riverine dissolved organic matter at low salinities due to flocculation. Journal of Geophysical Research-Biogeosciences 119: 1919–1933.

    CAS  Article  Google Scholar 

  • Belkin, I.M. 2009. Rapid warming of Large Marine Ecosystems. Progress in Oceanography 81: 207–213.

    Article  Google Scholar 

  • Blanchard, J.L., R. Law, M.D. Castle, and S. Jennings. 2011. Coupled energy pathways and the resilience of size-structured food webs. Theoretical Ecology 4: 289–300.

    Article  Google Scholar 

  • Blomqvist, S., and A.S. Heiskanen. 2001. The challenge of sedimentation in the Baltic Sea. In A systems analysis of the Baltic Sea. Ecological Studies, ed. F.D. Wulff, L.A. Rahm, and P. Larsson, Vol. 148, 211–227. Berlin: Springer.

  • Blomqvist, S., and U. Larsson. 1994. Detrital bedrock elements as tracers of settling resuspended particulate matter in a coastal area of the Baltic Sea. Limnology and Oceanography 39: 880–896.

    CAS  Article  Google Scholar 

  • Bonsdorff, E., E.M. Blomqvist, J. Mattila, and A. Norkko. 1997. Coastal eutrophication: Causes, consequences and perspectives in the Archipelago areas of the northern Baltic Sea. Estuarine, Coastal and Shelf Science 44: 63–72.

    Article  Google Scholar 

  • Carstensen, J., D.J. Conley, E. Bonsdorff, B.G. Gustafsson, S. Hietanen, U. Janas, T. Jilbert, A. Maximov, et al. 2014. Hypoxia in the Baltic Sea: Biogeochemical cycles, benthic fauna, and management. Ambio 43: 26–36.

    CAS  Article  Google Scholar 

  • Christensen, O.B., E. Kjellström, and E. Zorita. 2015. Projected change—atmosphere. In Second assessment of climate change for the Baltic Sea Basin, ed. The BACC II Author Team, 217–233. Springer.

  • Cloern, J.E., P.C. Abreu, J. Carstensen, L. Chauvaud, R. Elmgren, J. Grall, H. Greening, J.O.R. Johansson, et al. 2016. Human activities and climate variability drive fast-paced change across the world’s estuarine-coastal ecosystems. Global Change Biology 22: 513–529.

    Article  Google Scholar 

  • Diaz, R.J., and R. Rosenberg. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321: 926–929.

    CAS  Article  Google Scholar 

  • Eggers, S.L., A.M. Lewandowska, J. Barcelos e Ramos, S. Blanco-Ameijeiras, F. Gallo, and B. Matthiessen. 2014. Community composition has greater impact on the functioning of marine phytoplankton communities than ocean acidification. Global Change Biology 20: 713–723.

    Article  Google Scholar 

  • Eilola, K., S. Martensson, and H.E.M. Meier. 2013. Modeling the impact of reduced sea ice cover in future climate on the Baltic Sea biogeochemistry. Geophysical Research Letters 40: 149–154.

    CAS  Article  Google Scholar 

  • Elmgren, R. 1984. Trophic dynamics in the enclosed, brackish Baltic Sea. Rapports et Procès-verbaux des Réunions Conseil International Pour L’Exploration de la Mer 183: 153–179.

    Google Scholar 

  • Engström, J., M. Koski, M. Viitasalo, M. Reinikainen, S. Repka, and K. Sivonen. 2000. Feeding interactions of the copepods Eurytemora affinis and Acartia bifilosa with the cyanobacteria Nodularia sp. Journal of Plankton Research 22: 1403–1409.

    Article  Google Scholar 

  • Feike, M., R. Heerkloss, T. Rieling, and H. Schubert. 2007. Studies on the zooplankton community of a shallow lagoon of the Southern Baltic Sea: long-term trends, seasonal changes, and relations with physical and chemical parameters. Hydrobiologia 577: 95–106.

    CAS  Article  Google Scholar 

  • Fleming-Lehtinen, V., M. Laamanen, H. Kuosa, H. Haahti, and R. Olsonen. 2008. Long-term development of inorganic nutrients and chlorophyll alpha in the open northern Baltic Sea. Ambio 37: 86–92.

    CAS  Article  Google Scholar 

  • Forest, A., S. Belanger, M. Sampei, H. Sasaki, C. Lalande, and L. Fortier. 2010. Three-year assessment of particulate organic carbon fluxes in Amundsen Gulf (Beaufort Sea): Satellite observations and sediment trap measurements. Deep-Sea Research Part I 57: 125–142.

    CAS  Article  Google Scholar 

  • Forest, A., J.E. Tremblay, Y. Gratton, J. Martin, J. Gagnon, G. Darnis, M. Sampei, L. Fortier, et al. 2011. Biogenic carbon flows through the planktonic food web of the Amundsen Gulf (Arctic Ocean): A synthesis of field measurements and inverse modeling analyses. Progress in Oceanography 91: 410–436.

    Article  Google Scholar 

  • Goñi, M.A., M.B. Yunker, R.W. Macdonald, and T.I. Eglinton. 2000. Distribution and sources of organic biomarkers in arctic sediments from the Mackenzie River and Beaufort Shelf. Marine Chemistry 71: 23–51.

    Article  Google Scholar 

  • Grebmeier, J.M., J.E. Overland, S.E. Moore, E.V. Farley, E.C. Carmack, L.W. Cooper, K.E. Frey, and J.H. Helle. 2006. A major ecosystem shift in the northern Bering Sea. Science 311: 1461–1464.

    CAS  Article  Google Scholar 

  • Griffiths, J.R., M. Kadin, F.J.A. Nascimento, T. Tamelander, A. Törnroos, S. Bonaglia, E. Bonsdorff, V. Brüchert, et al. 2017. The importance of benthic–pelagic coupling for marine ecosystem functioning in a changing world. Global Change Biology 23: 2179–2196.

    Article  Google Scholar 

  • Groetsch, P.M.M., S.G.H. Simis, M.A. Eleveld, and S.W.M. Peters. 2016. Spring blooms in the Baltic Sea have weakened but lengthened from 2000 to 2014. Biogeosciences 13: 4959–4973.

    Article  Google Scholar 

  • Gustafsson, O., J. Gelting, P. Andersson, U. Larsson, and P. Roos. 2013. An assessment of upper ocean carbon and nitrogen export fluxes on the boreal continental shelf: A 3-year study in the open Baltic Sea comparing sediment traps, Th-234 proxy, nutrient, and oxygen budgets. Limnology and Oceanography-Methods 11: 495–510.

    CAS  Article  Google Scholar 

  • Hansen, A.S., T.G. Nielsen, H. Levinsen, S.D. Madsen, T.F. Thingstad, and B.W. Hansen. 2003. Impact of changing ice cover on pelagic productivity and food web structure in Disko Bay, West Greenland: A dynamic model approach. Deep-Sea Research Part I 50: 171–187.

    Article  Google Scholar 

  • Havenhand, J.N. 2012. How will ocean acidification affect Baltic Sea ecosystems? An assessment of plausible impacts on key functional groups. Ambio 41: 637–644.

    Article  Google Scholar 

  • Heiskanen, A.S., and K. Kononen. 1994. Sedimentation of vernal and late summer phytoplankton communities in the coastal Baltic Sea. Archiv fur Hydrobiologie 131: 175–198.

    Google Scholar 

  • Heiskanen, A.S., and M. Leppänen. 1995. Estimation of export production in the coastal Baltic Sea: Effect of resuspension and microbial decomposition on sedimentation measurements. Hydrobiologia 316: 211–224.

    CAS  Article  Google Scholar 

  • Heiskanen, A.S., and P. Tallberg. 1999. Sedimentation and particulate nutrient dynamics along a coastal gradient from a fjord-like bay to the open sea. Hydrobiologia 393: 127–140.

    CAS  Article  Google Scholar 

  • Hoikkala, L., T. Lahtinen, M. Perttilä, and R. Lignell. 2012. Seasonal dynamics of dissolved organic matter on a coastal salinity gradient in the northern Baltic Sea. Continental Shelf Research 45: 1–14.

    Article  Google Scholar 

  • Josefson, A.B., J. Norkko, and A. Norkko. 2012. Burial and decomposition of plant pigments in surface sediments of the Baltic Sea: Role of oxygen and benthic fauna. Marine Ecology Progress Series 455: 33–49.

    CAS  Article  Google Scholar 

  • Kaartokallio, H., E. Asmala, R. Autio, and D.N. Thomas. 2016. Bacterial production, abundance and cell properties in boreal estuaries: Relation to dissolved organic matter quantity and quality. Aquatic Sciences 78: 525–540.

    CAS  Article  Google Scholar 

  • Kahru, M., R. Elmgren, and O.P. Savchuk. 2016. Changing seasonality of the Baltic Sea. Biogeosciences 13: 1009–1018.

    Article  Google Scholar 

  • Kopp, D., S. Lefebvre, M. Cachera, M.C. Villanueva, and B. Ernande. 2015. Reorganization of a marine trophic network along an inshore-offshore gradient due to stronger pelagic-benthic coupling in coastal areas. Progress in Oceanography 130: 157–171.

    Article  Google Scholar 

  • Koski, M., M. Viitasalo, and H. Kuosa. 1999. Seasonal development of mesozooplankton biomass and production on the SW coast of Finland. Ophelia 50: 69–91.

    Article  Google Scholar 

  • Koski, M., K. Schmidt, J. Engström-Öst, M. Viitasalo, S. Jonasdottir, S. Repka, and K. Sivonen. 2002. Calanoid copepods feed and produce eggs in the presence of toxic cyanobacteria Nodularia spumigena. Limnology and Oceanography 47: 878–885.

    Article  Google Scholar 

  • Leandro, S.M., H. Queiroga, L. Rodrígues-Graña, P. Tiselius. 2006. Temperature-dependent development and somatic growth in two allopatric populations of Acartia clausi (Copepoda: Calanoida). Marine Ecology Progress Series 322: 189–197.

    Article  Google Scholar 

  • Lehtonen, K.K., and A.B. Andersin. 1998. Population dynamics, response to sedimentation and role in benthic metabolism of the amphipod Monoporeia affinis in an open-sea area of the northern Baltic Sea. Marine Ecology Progress Series 168: 71–85.

    Article  Google Scholar 

  • Lehtoranta, J., P. Ekholm, and H. Pitkänen. 2008. Eutrophication-driven sediment microbial processes can explain the regional variation in phosphorus concentrations between Baltic Sea sub-basins. Journal of Marine Systems 74: 495–504.

    Article  Google Scholar 

  • Lehtoranta, J., P. Ekholm, and H. Pitkänen. 2009. Coastal eutrophication thresholds: A matter of sediment microbial processes. Ambio 38: 303–308.

    CAS  Article  Google Scholar 

  • Leipe, T., F. Tauber, H. Vallius, J. Virtasalo, S. Uscinowicz, N. Kowalski, S. Hille, S. Lindgren, and T. Myllyvirta. 2011. Particulate organic carbon (POC) in surface sediments of the Baltic Sea. Geo-Marine Letters 31: 175–188.

    CAS  Article  Google Scholar 

  • Lignell, R., A.S. Heiskanen, H. Kuosa, K. Gundersen, P. Kuupopo-Leinikke, R. Pajuniemi, and A. Uitto. 1993. Fate of a phytoplankton spring bloom—sedimentation and carbon flow in the planktonic food web in the northern Baltic. Marine Ecology Progress Series 94: 239–252.

    Article  Google Scholar 

  • Meier, H.E.M. 2015. Projected change—marine physics. In Second assessment of climate change for the Baltic Sea Basin, ed. The BACC II Author Team, 960–996. Springer.

  • Meier, H.E.M., K. Eilola, and E. Almroth. 2011. Climate-related changes in marine ecosystems simulated with a 3-dimensional coupled physical-biogeochemical model of the Baltic Sea. Climate Research 48: 31–55.

    Article  Google Scholar 

  • Meier, H.E.M., R. Hordoir, H.C. Handersson, C. Dietrich, K. Eilola, B.G. Gustafsson, A. Höglund, and S. Schimanke. 2012. Modeling the combined impact of changing climate and changing nutrient loads on the Baltic Sea environment in an ensemble of transient simulations for 1961–2099. Climate Dynamics 39: 2421–2441.

    Article  Google Scholar 

  • Merkouriadi, I., and M. Leppäranta. 2014. Long-term analysis of hydrography and sea-ice data in Tvarminne, Gulf of Finland, Baltic Sea. Climatic Change 124: 849–859.

    CAS  Article  Google Scholar 

  • Möllmann, C., G. Kornilovs, and L. Sidrevics. 2000. Long-term dynamics of main mesozooplankton species in the central Baltic Sea. Journal of Plankton Research 22: 2015–2038.

    Article  Google Scholar 

  • Nixon, S.W., R.W. Fulweiler, B.A. Buckley, S.L. Granger, B.L. Nowicki, and K.M. Henry. 2009. The impact of changing climate on phenology, productivity, and benthic-pelagic coupling in Narragansett Bay. Estuarine, Coastal and Shelf Science 82: 1–18.

    CAS  Article  Google Scholar 

  • Passow, U., and C.A. Carlson. 2012. The biological pump in a high CO2 world. Marine Ecology Progress Series 470: 249–271.

    CAS  Article  Google Scholar 

  • Paul, C., B. Matthiessen, and U. Sommer. 2015. Warming, but not enhanced CO2 concentration, quantitatively and qualitatively affects phytoplankton biomass. Marine Ecology Progress Series 528: 39–51.

    CAS  Article  Google Scholar 

  • Petersen, G.H., and M.A. Curtis. 1980. Differences in energy flow through major components of subarctic, temperate and tropical marine shelf ecosystems. Dana 1: 53–64.

    Google Scholar 

  • Richardson, A.J. 2008. In hot water: zooplankton and climate change. ICES Journal of Marine Science 65: 279–295.

    Article  Google Scholar 

  • Riebesell, U., K.G. Schultz, R.G.J. Bellerby, M. Botros, P. Fritsche, M. Meyerhöfer, C. Neill, G. Nondal, et al. 2007. Enhanced biological carbon consumption in a high CO2 ocean. Nature 450: 545–548.

    CAS  Article  Google Scholar 

  • Riebesell, U., P.D. Tortell. 2011. Effects of ocean acidification on pelagic organisms and ecosystems. In Ocean acidification, eds. Gattuso J-P., L. Hansson, p 99–121. Oxford: Oxford Universty Press.

  • Renaud P., T.S. Løkken, L.L. Jørgensen, J. Berge, B.J. Johnson. 2015. Macroalgaldetritus and food-web subsidies along an Arctic fjord depth-gradient. Frontiers in Marine Science 2: article nr 31.

  • Rosoll, D., U. Sommer, and M. Winder. 2013. Community interactions dampen acidification effects in a coastal plankton system. Marine Ecology Progress Series 486: 37–46.

    Article  Google Scholar 

  • Sholkovitz, E.R., E.A. Boyle, and N.B. Price. 1978. Removal of dissolved humic acids and iron during estuarine mixing. Earth and Planetary Science Letters 40: 130–136.

    CAS  Article  Google Scholar 

  • Simis, S., P. Ylöstalo, K. Kallio, K. Spilling, and T. Kutser. 2017. Optical-biogeochemical models of the Baltic Sea in spring and summer. PLoS ONE 12: e0173357.

    Article  Google Scholar 

  • Smetacek, V., B. von Bodungen, R. Knoppers, R. Peinert, F. Pollehne, P. Stegmann, and B. Zeitzschel. 1984. Seasonal stages characterizing the annual cycle of an inshore pelagic system. Rapports et Procès-verbaux des Réunions Conseil International Pour L’Exploration de la Mer 183: 126–135.

    Google Scholar 

  • Sommer, U., N. Aberle, K. Lengfellner, and A. Lewandowska. 2012. The Baltic Sea spring phytoplankton bloom in a changing climate: An experimental approach. Marine Biology 159: 2479–2490.

    Article  Google Scholar 

  • Sonnenborg, T.O. 2015. Projected Change - Hydrology. In Second assessment of climate change for the Baltic Sea Basin, ed. The BACC II Author Team, 933–959. Springer.

  • Spilling, K., K.G. Scchultz, A.J. Paul, T. Boxhammer, E.P. Achterberg, T. Hrnick, S. Lischka, A. Stuhr, et al. 2016. Effects of ocean acidification on pelagic carbon fluxes in a mesocosm experiment. Biogeosciences 13: 6081–6093.

    Article  Google Scholar 

  • Suikkanen, S., M. Laamanen, and M. Huttunen. 2007. Long-term changes in summer phytoplankton communities of the open northern Baltic Sea. Estuarine, Coastal and Shelf Science 71: 580–592.

    Article  Google Scholar 

  • Suikkanen, S., S. Pulina, J. Engström-Öst, M. Lehtiniemi, S. Lehtinen, and A. Brutemark. 2013. Climate change and eutrophication induced shifts in northern summer plankton communities. PLoS ONE 8: e66475.

    CAS  Article  Google Scholar 

  • Tallberg, P., and A.S. Heiskanen. 1998. Species-specific phytoplankton sedimentation in relation to primary production along an inshore-offshore gradient in the Baltic Sea. Journal of Plankton Research 20: 2053–2070.

    Article  Google Scholar 

  • Tamelander, T., and A.S. Heiskanen. 2004. Effects of spring bloom phytoplankton dynamics and hydrography on the composition of settling material in the coastal northern Baltic Sea. Journal of Marine Systems 52: 217–234.

    Article  Google Scholar 

  • Tamelander, T., P.E. Renaud, H. Hop, M.L. Carroll, W.G. Ambrose, and K.A. Hobson. 2006. Trophic relationships and pelagic-benthic coupling during summer in the Barents Sea Marginal Ice Zone, revealed by stable carbon and nitrogen isotope measurements. Marine Ecology Progress Series 310: 33–46.

    CAS  Article  Google Scholar 

  • Thingstad, T.F., M.D. Krom, R.F.C. Mantoura, G.A.F. Flaten, S. Groom, B. Herut, N. Kress, C.S. Law, et al. 2005. Nature of phosphorus limitation in the ultraoligotrophic eastern Mediterranean. Science 309: 1068–1071.

    CAS  Article  Google Scholar 

  • Timmermann, K., J. Norkko, U. Janas, A. Norkko, B.G. Gustafsson, and E. Bonsdorff. 2012. Modelling macrofaunal biomass in relation to hypoxia and nutrient loading. Journal of Marine Systems 105: 60–69.

    Article  Google Scholar 

  • Turner, J.T. 2015. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Progress in Oceanography 130: 205–248.

    Article  Google Scholar 

  • Vahtera, E., D.J. Conley, B.G. Gustafssonm, H. Kuosa, H. Pitkänen, O.P. Savchuk, T. Tamminen, M. Viitasalo, et al. 2007. Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea. Ambio 36: 186–194.

    CAS  Article  Google Scholar 

  • Vehmaa, A., A.K. Almén, A. Brutemark, A. Paul, U. Riebesell, S. Furuhagen, and J. Engström-Öst. 2016. Ocean acidification challenges copepod phenotypic plasticity. Biogeosciences 13: 6171–6182.

    Article  Google Scholar 

  • Viitasalo, M., I. Vuorinen, and S. Saesmaa. 1995. Mesozooplankton dynamics in the northern Baltic Sea—implications of variations in hydrography and climate. Journal of Plankton Research 17: 1857–1878.

    Article  Google Scholar 

  • Wassmann, P. 1998. Retention versus export food chains: processes controlling sinking loss from marine pelagic systems. Hydrobiologia 363: 29–57.

    Article  Google Scholar 

  • Wiklund, A.K.E., and A. Andersson. 2014. Benthic competition and population dynamics of Monoporeia affinis and Marenzelleria sp. in the northern Baltic Sea. Estuarine, Coastal and Shelf Science 144: 46–53.

    Article  Google Scholar 

  • Wikner, J., and A. Andersson. 2012. Increased freshwater discharge shifts the trophic balance in the coastal zone of the northern Baltic Sea. Global Change Biology 18: 2509–2519.

    Article  Google Scholar 

  • Winder, M., and U. Sommer. 2012. Phytoplankton response to a changing climate. Hydrobiologia 698: 5–16.

    Article  Google Scholar 

Download references

Acknowledgements

We are indebted to Lena Seuthe who compiled the POC flux and pelagic biomass data from the Arctic Ocean and to Marit Reigstad who kindly made unpublished data from the project CarbonBridge (Reserach Council of Norway, nr. 226415) available. We thank Alf Norkko and two anonymous reviewers for comments that improved the quality of the mansucript. This study was financially supported by the Swedish Cultural Foundation in Finland and the Walter and Andrée de Nottbeck Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Tamelander.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 63 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tamelander, T., Spilling, K. & Winder, M. Organic matter export to the seafloor in the Baltic Sea: Drivers of change and future projections. Ambio 46, 842–851 (2017). https://doi.org/10.1007/s13280-017-0930-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-017-0930-x

Keywords

  • Acidification
  • Baltic Sea
  • Climate warming
  • Eutrophication
  • Organic matter export
  • Pelagic food web