Advertisement

Ambio

, Volume 45, Issue 8, pp 933–945 | Cite as

Predicting the export and concentrations of organic carbon, nitrogen and phosphorus in boreal lakes by catchment characteristics and land use: A practical approach

  • Marjo Palviainen
  • Ari Laurén
  • Samuli Launiainen
  • Sirpa Piirainen
Report

Abstract

The majority of C, N and P in boreal lakes are in organic form. Organically bound nutrients are released through biodegradation or photodegradation which affects the water quality, eutrophication and greenhouse gas emissions of lakes. We tested whether open land-use data combined with land-use-specific export coefficients can be used to predict total organic carbon (TOC), dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP) loading and lake water concentrations. Using data from 12 lake catchments in eastern Finland, we found that land use and management of the catchment explained a substantial proportion of the variations in TOC (r 2 = 0.78), DON (r 2 = 0.55) and DOP (r 2 = 0.80) concentrations between lakes. The computation does not account for in-lake processes, which are reflected as mismatch between the predicted and observed concentrations. However, this simple practical approach is useful in ranking lakes according to their water quality. The results indicated that natural sources dominate TOC, DON and DOP exports; the background leachings accounted for 57–99 %, 48–96 % and 55–99 % of TOC, DON and DOP export, respectively. The proposed method has promise as a practical decision support tool for assessing the impacts of land use on water quality. The results showed that possibilities to control TOC, DON and DOP loading to surface waters are limited to catchments where the peatland proportion is low and anthropogenic sources significant.

Keywords

Carbon Land use Organic nitrogen Organic phosphorus Specific export coefficient Water quality 

Notes

Acknowledgments

This study is a part of the TERLA project (Nos. 263429 and 292902) supported by the AKVA programme of the Academy of Finland. We thank agricultural secretaries of the municipalities, the staff of the regional Centre for Economic development, Transport and the Environment, and Ms. Anne Nylander from the Natural Resources Institute for help with data collection.

References

  1. Ahti, E., S. Joensuu, and M. Vuollekoski. 1999. Kunnostusojituksen vaikutus metsäojitusalueiden valumaveden kemiallisiin ominaisuuksiin. In Environmental load of forestry. Proceedings of a workshop in Nurmes, September 23rd–24th, 1998, eds. E. Ahti, H. Granlund, and E. Puranen, 79–90. The Finnish Forest Research Institute Research Papers no. 745 (in Finnish).Google Scholar
  2. Aitkenhead-Peterson, J.A., J.E. Alexander, and T.A. Clair. 2005. Dissolved organic carbon and dissolved organic nitrogen export from forested watersheds in Nova Scotia: identifying controlling factors. Global Biogeochemical Cycles 19: GB4016.CrossRefGoogle Scholar
  3. Akkanen, J., R.D. Vogt, and J.V.K. Kukkonen. 2004. Essential characteristics of natural dissolved organic matter affecting the sorption of hydrophobic organic contaminants. Aquatic Sciences 66: 171–177.CrossRefGoogle Scholar
  4. Allan, J.D. 2004. Landscapes and riverscapes: The Influence of Land Use on Stream Ecosystems. Annual Review of Ecology Evolution and Systematics 35: 257–284.CrossRefGoogle Scholar
  5. Bergknut, M., H. Laudon, S. Jansson, A. Larsson, T. Gocht, and K. Wiberg. 2011. Atmospheric deposition, retention, and stream export of dioxins and PCBs in a pristine boreal catchment. Environmental Pollution 159: 1592–1598.CrossRefGoogle Scholar
  6. Bossard, M., J. Feranec, and J. Otahel. 2000. CORINE land cover technical guide—Addendum 2000. European Environment Agency Technical Report 40, 105 p.Google Scholar
  7. Brookshire, E.N.J., H.M. Valett, S.A. Thomas, and J.R. Webster. 2005. Coupled cycling of dissolved organic nitrogen and carbon in a forest stream. Ecology 86: 2487–2496.CrossRefGoogle Scholar
  8. Buffam, I., H. Laudon, J. Seibert, C.-M. Mörth, and K. Bishop. 2008. Spatial heterogeneity of the spring flood acid pulse in a boreal stream network. Science of the Total Environment 407: 708–722.CrossRefGoogle Scholar
  9. Cole, J.J., Y.T. Prairie, N.F. Caraco, W.H. McDowell, L.J. Tranvik, R.G. Striegl, C.M. Duarte, P. Kortelainen, et al. 2007. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems 10: 171–184.CrossRefGoogle Scholar
  10. Dillon, P.J., and L.A. Molot. 1997. Effect of landscape form on export of dissolved organic carbon, iron, and phosphorus from forested stream catchments. Water Resources Research 33: 2591–2600.CrossRefGoogle Scholar
  11. Domisch, T., L. Finér, R. Laiho, M. Karsisto, and J. Laine. 2000. Decomposition of Scots pine litter and the fate of released carbon in pristine and drained pine mires. Soil Biology & Biochemistry 32: 1571–1580.CrossRefGoogle Scholar
  12. Fiebig, D.M., M.A. Lock, and C. Neal. 1990. Soil water in the riparian zone as a source of carbon for a headwater stream. Journal of Hydrology 116: 217–237.CrossRefGoogle Scholar
  13. Findlay, S.E.G., and R.L. Sinsabaugh. 2003. Aquatic ecosystems—Interactivity of dissolved organic matter. Laguna Hills: Elsevier Science, 511 p.Google Scholar
  14. Finér, L., T. Mattsson, S. Joensuu, H. Koivusalo, A. Laurén, T. Makkonen, M. Nieminen, S. Tattari, et al. 2010. Metsäisten valuma-alueiden vesistökuormituksen laskenta [A method for calculating nitrogen, phosphorus and sediment load from forest catchment]. The Finnish Environment 10: 1–33.Google Scholar
  15. Finnish Environment Institute (SYKE). 2005. Water quality of lakes, rivers and sea areas in Finland in 2000–2003 -brochure. http://www.syke.fi/enUS/Publications/Brochures/Water_quality_of_lakes_rivers_and_sea_ar%283082%29. Accessed 29 February 2016.
  16. Finnish Statistical Yearbook of Forestry. 2014. In Agriculture, forestry and fishery, official statistics of Finland, ed. A. Peltola. Finnish Forest Research Institute, Tammerprint Oy, Tampere, 426 p.Google Scholar
  17. Freeman, C., C.D. Evans, D.T. Monteith, B. Reynolds, and N. Fenner. 2001. Export of organic carbon from peat soils. Nature 412: 785.CrossRefGoogle Scholar
  18. Hallanaro, E.-L., and K. Kujala-Räty. 2011. Wastewaters in sparsely populated areas. Legislation and practice. Environment Guide. Ministry of the Environment, Edita Prima Ltd, Helsinki, 125 p (in Finnish).Google Scholar
  19. Hanson, P.C., D.L. Bade, S.R. Carpenter, and T.K. Kratz. 2003. Lake metabolism: Relationships with dissolved organic carbon and phosphorus. Limnology and Oceanography 48: 1112–1119.CrossRefGoogle Scholar
  20. Hedin, L.O., J.J. Armesto, and A.H. Johnson. 1995. Patterns of nutrient loss from unpolluted, old-growth temperate forests: Evaluation of biogeochemical theory. Ecology 76: 493–509.CrossRefGoogle Scholar
  21. HELCOM. 2011. The Fifth Baltic Sea pollution load compilation (PLC-5). Baltic Sea environment proceedings no. 128.Google Scholar
  22. Jansson, M., A.-K. Bergström, P. Blomquist, and S. Drakare. 2000. Allochthonous organic carbon and phytoplankton/bacterioplankton production relationships in lakes. Ecology 81: 3250–3255.CrossRefGoogle Scholar
  23. Joensuu, S., E. Ahti, and M. Vuollekoski. 2001. Discharge water quality from old ditch networks in Finnish peatland forests. Suo 52: 1–15.Google Scholar
  24. Joensuu, S., E. Ahti, and M. Vuollekoski. 2002. Effects of ditch network maintenance on the chemistry of run-off water from peatland forests. Scandinavian Journal of Forest Research 17: 238–247.CrossRefGoogle Scholar
  25. Johnes, P.J., and D. Butterfield. 2002. Landscape, regional and global estimates of nitrogen flux from land to sea: Errors and uncertainties. Biogeochemistry 57: 429–476.CrossRefGoogle Scholar
  26. Jonsson, A., M. Meili, A.-K. Bergström, and M. Jansson. 2001. Whole-lake mineralization of allochthonous and autochthonous organic carbon in a large humic lake (Örträsket, N. Sweden). Limnology and Oceanography 46: 1691–1700.CrossRefGoogle Scholar
  27. Kalbitz, K., S. Solinger, J.-H. Park, B. Michalzik, and E. Matzner. 2000. Controls on the dynamics of dissolved organic matter in soils: a review. Soil Science 165: 277–304.CrossRefGoogle Scholar
  28. Kankaala, P., S. Peura, H. Nykänen, E. Sonninen, S. Taipale, M. Tiirola, and R.I. Jones. 2010. Impacts of added dissolved organic carbon on boreal freshwater pelagic metabolism and food webs in mesocosm experiments. Fundamental and Applied Limnology 177: 161–176.CrossRefGoogle Scholar
  29. Kenttämies, K. 2006. A method for calculating nutrient loads from forestry: Principles and national applications in Finland. Verhandlungen des Internationalen Verein Limnologie 29: 1591–1594.Google Scholar
  30. Kenttämies, K., and T. Mattsson. 2006. Metsätalouden vesistökuormitus. MESUVE-projektin loppuraportti [The loading of waters from forestry, final report of the MESUVE—project]. The Finnish Environment 816: 1–160.Google Scholar
  31. Keskitalo, J., and P. Eloranta. 1999. Limnology of humic waters. Leiden: Backhuys Publishers, 284 p.Google Scholar
  32. Kindler, R., J. Siemens, K. Kaiser, D.C. Walmsley, C. Bernhofer, N. Buchmann, P. Cellier, W. Eugster, et al. 2011. Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance. Global Change Biology 17: 1167–1185.CrossRefGoogle Scholar
  33. Kløve, B. 2001. Characteristics of nitrogen and phosphorus loads in peat mining wastewater. Water Research 35: 2353–2362.CrossRefGoogle Scholar
  34. Kortelainen, P. 1993. Content of total organic carbon in Finnish lakes and its relationship to catchment characteristics. Canadian Journal of Fisheries and Aquatic Sciences 50: 1477–1483.CrossRefGoogle Scholar
  35. Kortelainen, P., T. Mattsson, L. Finér, M. Ahtiainen, S. Saukkonen, and T. Sallantaus. 2006. Controls on the export of C, N, P and Fe from undisturbed boreal catchments, Finland. Aquatic Sciences 68: 453–468.CrossRefGoogle Scholar
  36. Launiainen, S., S. Sarkkola, A. Laurén, M. Puustinen, S. Tattari, T. Mattsson, S. Piirainen, J. Heinonen, et al. 2014. KUSTAA—A method for calculating nitrogen, phosphorus and sediment load from catchments. Reports of the Finnish Environment Institute no. 33, 55 p (in Finnish).Google Scholar
  37. Lepistö, A., K. Granlund, P. Kortelainen, and A. Räike. 2006. Nitrogen in river basins: Sources, retention in the surface waters and peatlands, and fluxes to estuaries in Finland. Science of the Total Environment 365: 238–259.CrossRefGoogle Scholar
  38. Li, B., and M.T. Brett. 2013. The influence of dissolved phosphorus molecular form on recalcitrance and bioavailability. Environmental Pollution 182: 37–44.CrossRefGoogle Scholar
  39. Lindroos, A.-J., J. Derome, and K. Derome. 2007. Open area bulk deposition and stand throughfall in Finland during 2001–2004. In Forest condition monitoring in Finland—National report 2002–2005, ed. P. Merilä, T. Kilponen, and J. Derome, 81–92. Working Papers of the Finnish Forest Research Institute no. 45.Google Scholar
  40. Lundin, L. 1999. Effects on hydrology and surface water chemistry of regeneration cuttings in peatland forests. International Peat Journal 9: 118–126.Google Scholar
  41. Mattsson, T., L. Finér, P. Kortelainen, and T. Sallantaus. 2003. Brook water quality and background leaching from unmanaged forested catchments in Finland. Water, Air, and Soil pollution 147: 275–297.CrossRefGoogle Scholar
  42. Mattsson, T., P. Kortelainen, A. Laubel, D. Evans, M. Pujo-Pay, A. Räike, and P. Conan. 2009. Export of dissolved organic matter in relation to land use along European climatic gradient. Science of the Total Environment 407: 1967–1976.CrossRefGoogle Scholar
  43. Mattsson, T., P. Kortelainen, and A. Räike. 2005. Export of DOM from boreal catchments: Impacts of land use cover and climate. Biogeochemistry 76: 373–394.CrossRefGoogle Scholar
  44. McFarland, A.M.S., and L.M. Hauck. 2001. Determining nutrient export coefficients and source loading uncertainty using in-stream monitoring data. Journal of the American Water Resources Association 37: 223–236.CrossRefGoogle Scholar
  45. Molot, L.A., and P.J. Dillon. 1996. Storage of terrestrial carbon in boreal lake sediments and evasion to the atmosphere. Global Biogeochemical Cycles 10: 483–492.CrossRefGoogle Scholar
  46. Monteith, D.T., J.L. Stoddard, C. Evans, H. de Wit, M. Forsius, T. Høgåsen, A. Wilander, B.L. Skjelkvåle, D.S. Jeffries, J. Vuorenmaa, B. Keller, J. Kopácek, and J. Vesely. 2007. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450: 537–541.CrossRefGoogle Scholar
  47. Mulholland, P.J. 2003. Large-scale patterns in dissolved organic carbon concentration, flux, and sources. In Aquatic ecosystems—Interactivity of dissolved organic matter, ed. S. Findlay, and R.L. Sinsabaugh, 139–160. Amsterdam: Academic Press.Google Scholar
  48. Nieminen, M. 2004. Export of dissolved organic carbon, nitrogen and phosphorous following clear-cutting of three Norway spruce forests growing on drained peatlands in southern Finland. Silva Fennica 38: 123–132.Google Scholar
  49. Nieminen, M., E. Ahti, H. Koivusalo, T. Mattsson, S. Sarkkola, and A. Laurén. 2010. Export of suspended solids and dissolved elements from peatland areas after ditch network maintenance in south-central Finland. Silva Fennica 44: 39–49.CrossRefGoogle Scholar
  50. Palviainen, M., L. Finér, A. Laurén, S. Launiainen, S. Piirainen, T. Mattsson, and M. Starr. 2014. Nitrogen, phosphorus, carbon, and suspended solids loads from forest clear-cutting and site preparation: Long-term paired catchment studies from Eastern Finland. Ambio 43: 218–233.CrossRefGoogle Scholar
  51. Pellerin, B.A., S.S. Kaushal, and W.H. McDowell. 2006. Does anthropogenic nitrogen enrichment increase organic nitrogen concentrations in runoff from forested and human-dominated watersheds? Ecosystems 9: 852–864.CrossRefGoogle Scholar
  52. Pellerin, B.A., W.M. Wollheim, C.S. Hopkinson, W.H. McDowell, M.R. Williams, C.J. Vörösmarty, and M.L. Daley. 2004. Role of wetlands and developed land use on dissolved organic nitrogen concentrations and DON/TDN in northeastern U.S. rivers and streams. Limnology and Oceanography 49: 910–918.CrossRefGoogle Scholar
  53. Piirainen, S., L. Finér, H. Mannerkoski, and M. Starr. 2004. Effects of forest clear-cutting on the sulphur, phosphorus and base cations fluxes through podzolic soil horizons. Biogeochemistry 69: 405–424.CrossRefGoogle Scholar
  54. Piirainen, S., L. Finér, H. Mannerkoski, and M. Starr. 2007. Carbon, nitrogen and phosphorus leaching after site preparation at a boreal forest clear-cut area. Forest Ecology and Management 243: 10–18.CrossRefGoogle Scholar
  55. Pirinen, P., H. Simola, J. Aalto, J.-P. Kaukoranta, P. Karlsson, and R. Ruuhela. 2012. Climatological statistics of Finland 1981–2010. Finnish Meteorological Institute, Reports 2012: 1.Google Scholar
  56. Porvari, P., M. Verta, J. Munthe, and M. Haapanen. 2003. Forestry practices increase mercury and methyl mercury output from boreal forest catchments. Environmental Science and Technology 37: 2389–2393.CrossRefGoogle Scholar
  57. Pöyry, O. 2013. Turvetuotannon ominaiskuormitusselvitys 2003–2011.VAPO OY turvetuotantoalueiden vesistökuormituksen arviointi. Vedenlaatu- ja kuormitustarkastelu vuosien 2003–2011 tarkkailuaineistojen perusteella, 64 p.Google Scholar
  58. Puustinen, M., E. Turtola, M. Kukkonen, J. Koskiaho, J. Linjama, R. Niinioja, and S. Tattari. 2010. VIHMA—A tool for allocation of measures to control erosion and nutrient loading from Finnish agricultural catchments. Agriculture, Ecosystems & Environment 138: 306–317.CrossRefGoogle Scholar
  59. Rantakari, M., P. Kortelainen, J. Vuorenmaa, J. Mannio, and M. Forsius. 2004. Finnish lake survey: The role of catchment attributes in determining nitrogen, phosphorus, and organic carbon concentrations. Water, Air, & Soil Pollution: Focus 4: 683–699.CrossRefGoogle Scholar
  60. Räty, M., K. Järvenranta, P. Virkajärvi, E. Saarijärvi, and H. Kröger. 2014. Jatkuvatoiminen ravinnekuormituksen seurantaverkosto Kirmanjärven valuma-alueella. In Suomen Maataloustieteellisen Seuran julkaisuja no 30, eds. M. Hakojärvi, and N. Schulman. www.smts.fi. ISBN 978-951-9041-58-2.
  61. Ravichandran, M. 2004. Interactions between mercury and dissolved organic matter—A review. Chemosphere 55: 319–331.CrossRefGoogle Scholar
  62. Sarkkola, S., H. Koivusalo, A. Laurén, P. Kortelainen, T. Mattsson, M. Palviainen, S. Piirainen, et al. 2009. Trends in hydrometeorological conditions and stream water organic carbon in boreal forested catchments. Science of the Total Environment 408: 92–101.CrossRefGoogle Scholar
  63. Schelker, J., K. Eklöf, K. Bishop, and H. Laudon. 2012. Effects of forestry operations on dissolved organic carbon concentrations and export in boreal first-order streams. Journal of Geophysical Research 117: G01011. doi: 10.1029/2011JG001827.CrossRefGoogle Scholar
  64. Schelker, J., K. Öhman, S. Löfgren, and H. Laudon. 2014. Scaling of increased dissolved organic carbon inputs by forest clear-cutting—What arrives downstream? Journal of Hydrology 508: 299–306.CrossRefGoogle Scholar
  65. Seitzinger, S.P., J.A. Harrison, E. Dumont, A.H.W. Beusen, and A.F. Bouwman. 2005. Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: An overview of Global Nutrient Export from Watersheds (NEWS) models and their application. Global Biogeochemical Cycles 19: GB4S01.CrossRefGoogle Scholar
  66. Sobek, S., L.J. Tranvik, Y.T. Prairie, P. Kortelainen, and J.C. Cole. 2007. Patterns and regulation of dissolved organic carbon: An analysis of 7,500 widely distributed lakes. Limnology and Oceanography 52: 1208–1219.CrossRefGoogle Scholar
  67. Soinne, H., L. Hoikkala, R. Lemola, and E. Turtola. 2014. Dissolved organic matter load from agricultural soils. In Proceedings of the 20th world congress of soil science: in commemoration of the 90th anniversary of the IUSS, June 8–13, 2014 Jeju.Google Scholar
  68. Solomon, C.T., S.E. Jones, B.C. Weidel, I. Buffam, M.L. Fork, J. Karlsson, S. Larsen, J.T. Lennon, et al. 2015. Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: Current knowledge and future challenges. Ecosystems 18: 376–389.CrossRefGoogle Scholar
  69. Stanley, E.H., and J.T. Maxted. 2008. Changes in the dissolved nitrogen pool across land cover gradients in Wisconsin streams. Ecological Applications 18: 1579–1590.CrossRefGoogle Scholar
  70. Statistical Yearbook of Finland. 2005. Statistics Finland. 702 p.Google Scholar
  71. Stedmon, C.A., S. Markager, M. Søndergaard, T. Vang, A. Laubel, N.H. Borch, and A. Windelin. 2006. Dissolved organic matter (DOM) export to a temperate estuary: Seasonal variations and implications of land use. Estuaries and Coasts 29: 388–400.CrossRefGoogle Scholar
  72. Stedmon, C.A., S. Markager, L. Tranvik, L. Kronberg, T. Slätis, and W. Martinsen. 2007. Photochemical production of ammonium and transformation of dissolved organic matter in the Baltic Sea. Marine Chemistry 104: 227–240.CrossRefGoogle Scholar
  73. Tomppo, E., M. Haakana, M. Katila, K. Mäkisara, and J. Peräsaari. 2009. The multi-source national forest inventory of Finland—Methods and results 2005. Working papers of the Finnish Forest Research Institute no. 111, 277 p. http://www.metla.fi/julkaisut/workingpapers/2009/mwp111.htm.
  74. Tranvik, L.J., and S. Bertilsson. 2001. Contrasting effects of solar UV radiation on dissolved organic sources for bacterial growth. Ecology Letters 4: 458–463.CrossRefGoogle Scholar
  75. Von Wachenfeldt, E., and L.J. Tranvik. 2008. Sedimentation in Boreal Lakes—The role of flocculation of allochthonous dissolved organic matter in the water column. Ecosystems 11: 803–814.CrossRefGoogle Scholar
  76. Vuorenmaa, J., S. Rekolainen, A. Lepistö, K. Kenttämies, and P. Kauppila. 2002. Losses of nitrogen and phosphorus from agricultural and forest areas in Finland during the 1980s and 1990s. Environmental Monitoring and Assessment 76: 213–248.CrossRefGoogle Scholar
  77. Wiegner, T.N., and S.P. Seitzinger. 2001. Photochemical and microbial degradation of external dissolved organic matter inputs to rivers. Aquatic Microbial Ecology 24: 27–40.CrossRefGoogle Scholar
  78. Willett, V.B., B.A. Reynolds, P.A. Stevens, S.J. Ormerod, and D.L. Jones. 2004. Dissolved organic nitrogen regulation in freshwaters. Journal of Environmental Quality 33: 201–209.CrossRefGoogle Scholar
  79. Williams, M., C. Hopkinson, E. Rastetter, J. Vallino, and L. Claessens. 2005. Relationships of land use and stream solute concentrations in the Ipswich river basin, Northeastern Massachusetts. Water, Air, and Soil Pollution 161: 55–74.CrossRefGoogle Scholar
  80. Worrall, F., H. Davies, A. Bhogal, A. Lilly, M. Evans, K. Turner, T. Burt, D. Barraclough, et al. 2012. The flux of DOC from the UK—Predicting the role of soils, land use and net watershed losses. Journal of Hydrology 448–449: 149–160.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2016

Authors and Affiliations

  • Marjo Palviainen
    • 1
  • Ari Laurén
    • 2
  • Samuli Launiainen
    • 3
  • Sirpa Piirainen
    • 2
  1. 1.Department of Forest SciencesUniversity of HelsinkiHelsinkiFinland
  2. 2.Natural Resources Institute Finland (Luke)JoensuuFinland
  3. 3.Natural Resources Institute Finland (Luke)VantaaFinland

Personalised recommendations