Advertisement

AMBIO

, Volume 43, Issue 2, pp 207–217 | Cite as

Forest Die-Back Modified Plankton Recovery from Acidic Stress

  • Jaroslav Vrba
  • Jiří Kopáček
  • Jan Fott
  • Linda Nedbalová
Report

Abstract

We examined long-term data on water chemistry of Lake Rachelsee (Germany) following the changes in acidic depositions in central Europe since 1980s. Despite gradual chemical recovery of Rachelsee, its biological recovery was delayed. In 1999, lake recovery was abruptly reversed by a coincident forest die-back, which resulted in elevated terrestrial export of nitrate and ionic aluminum lasting ~5 years. This re-acidification episode provided unique opportunity to study plankton recovery in the rapidly recovering lake water after the abrupt decline in nitrate leaching from the catchment. There were sudden changes both in lake water chemistry and in plankton biomass structure, such as decreased bacterial filaments, increased phytoplankton biomass, and rotifer abundance. The shift from dominance of heterotrophic to autotrophic organisms suggested their substantial release from severe phosphorus stress. Such a rapid change in plankton structure in a lake recovering from acidity has, to the best of our knowledge, not been previously documented.

Keywords

Atmospheric acidification Bohemian Forest Lake recovery Microcodon clavus Phytoplankton Zooplankton 

Notes

Acknowledgments

This study was supported by several CSF projects (particularly No. 206/07/1200, P504/12/1218). Burkhard Beudert, Claus Bässler, and Heinrich Rall (NPBW) assisted with lake sampling, Ludwig Butz (WWA Passau/Deggendorf) kindly provided data (2000–2002) on lake chemistry, and Keith R. Edwards revised the manuscript.

References

  1. Almer, B., W. Dickson, C. Ekström, and E. Hörnström. 1978. Sulphur pollution and the aquatic ecosystems. In Sulphur in the environment, part II. Ecological impacts, ed. J.O. Nriagu, 271–311. New York: Wiley.Google Scholar
  2. Avalos Perez, E.A., J. DeCosta, and K.E. Havens. 1994. The effects of nutrient addition and pH manipulation in bag experiments on the phytoplankton of a small acidic lake in West Virginia, USA. Hydrobiologia 291: 93–103.CrossRefGoogle Scholar
  3. Currie, D.J., and J. Kalff. 1984. A comparison of the abilities of freshwater algae and bacteria to acquire and retain phosphorus. Limnology and Oceanography 29: 298–310.CrossRefGoogle Scholar
  4. Driscoll, C.T., G.B. Lawrence, A.J. Bulger, T.J. Butler, C.S. Cronan, C. Eagar, K.F. Lambert, G.E. Likens, et al. 2001. Acidic deposition in the northeastern US: Sources and inputs, ecosystems effects, and management strategies. BioScience 51: 180–198.CrossRefGoogle Scholar
  5. Fott, J., M. Pražáková, E. Stuchlík, and Z. Stuchlíková. 1994. Acidification of lakes in Šumava (Bohemia) and in the High Tatra Mountains (Slovakia). Hydrobiologia 274: 37–47.CrossRefGoogle Scholar
  6. Frič, A. 1874. Über weitere Untersuchungen der Böhmerwaldseen. Sitzungsbericht der königlichen böhmischen Gesellschaft der Wissenschaften in Prag, Jahrgang 1873: 103–109.Google Scholar
  7. Graham, M.D., R.D. Vinebrooke, B. Keller, J. Heneberry, K.H. Nicholls, and D.L. Findlay. 2007. Comparative responses of phytoplankton during chemical recovery in atmospherically and experimentally acidified lakes. Journal of Phycology 43: 908–923.CrossRefGoogle Scholar
  8. Gray, D.K., and S.E. Arnott. 2009. Recovery of acid damaged zooplankton communities: measurement, extent, and limiting factors. Environmental Reviews 17: 81–99.CrossRefGoogle Scholar
  9. Hellich, B. 1877. Die Cladoceren Böhmens. Archiv für die naturwissenschaftliche Landesdurchforschung von Böhmen, Prag 3: 1–131.Google Scholar
  10. Heurich, M. 2009. Progress of forest regeneration after a large-scale Ips typographus outbreak in the subalpine Picea abies forests of the Bavarian Forest National Park. Silva Gabreta 15: 49–66.Google Scholar
  11. Jeffries, D.S., T.A. Clair, S. Couture, P.J. Dillon, J. Dupont, W.B. Keller, D.K. McNicol, M.A. Turner, et al. 2003. Assessing the recovery of lakes in southeastern Canada from the effects of acidic deposition. AMBIO 32: 176–182.Google Scholar
  12. Keller, W., and N.D. Yan. 1998. Biological recovery from lake acidification: Zooplankton communities as a model of patterns and processes. Restoration Ecology 6: 364–375.CrossRefGoogle Scholar
  13. Kopáček, J., J. Hejzlar, E. Stuchlík, J. Fott, and J. Veselý. 1998. Reversibility of acidification of mountain lakes after reduction in nitrogen and sulphur emissions in Central Europe. Limnology and Oceanography 43: 357–361.CrossRefGoogle Scholar
  14. Kopáček, J., J. Hejzlar, and R. Mosello. 2000. Estimation of organic acid anion concentrations and evaluation of charge balance in atmospherically acidified colored waters. Water Research 34: 3598–3606.CrossRefGoogle Scholar
  15. Kopáček, J., M. Brzáková, J. Hejzlar, J. Nedoma, P. Porcal, and J. Vrba. 2004. Nutrient cycling in a strongly acidified mesotrophic lake. Limnology and Oceanography 49: 1202–1213.CrossRefGoogle Scholar
  16. Kopáček, J., M. Posch, J. Hejzlar, F. Oulehle, and A. Volková. 2012. An elevation-based regional model for interpolating sulphur and nitrogen deposition. Atmospheric Environment 50: 287–296.CrossRefGoogle Scholar
  17. Koste, W. 1978. Rotatoria. Die Rädertiere Mitteleuropas. I. Textband. Berlin: Gebrüder Borntraeger.Google Scholar
  18. Nedbalová, L., J. Vrba, J. Fott, L. Kohout, J. Kopáček, M. Macek, and T. Soldán. 2006. Biological recovery of the Bohemian Forest lakes from acidification. Biologia 61: S453–S465.CrossRefGoogle Scholar
  19. Nedoma, J., J. Vrba, T. Hanzl, and L. Nedbalová. 2001. Quantification of pelagic filamentous microorganisms in aquatic environments. FEMS Microbiology Ecology 38: 81–85.Google Scholar
  20. Psenner, R., and J. Catalan. 1994. Chemical composition of lakes in crystalline basins: A combination of atmospheric deposition, geologic background, biological activity and human action. In Limnology now: A paradigm of planetary problems, ed. R. Margalef, 255–314. Amsterdam: Elsevier.Google Scholar
  21. Reuss, J.O., and D.W. Johnson. 1986. Acid deposition and the acidification of soils and waters. New York: Springer.CrossRefGoogle Scholar
  22. Schaumburg, J. 2000. Long-term trends in biology and chemistry of the acidified Bavarian Forest lakes. Silva Gabreta 4: 29–40.Google Scholar
  23. Schindler, D.W. 1988. Effects of acid rain on freshwater ecosystems. Science 239: 149–157.CrossRefGoogle Scholar
  24. Skjelkvåle, B.L., C. Evans, T. Larssen, A. Hindar, and G.G. Raddum. 2003. Recovery from acidification in European surface waters: A view to the future. AMBIO 32: 170–175.Google Scholar
  25. Steinberg, C., K. Arzet, and D. Krause-Dellin. 1984. Gewässerversauerung in der Bundesrepublik Deutschland im Lichte paläolimnologischer Studien. Naturwissenschaften 71: 631–633.CrossRefGoogle Scholar
  26. Stoddard, J.L., D.S. Jeffries, A. Lükewille, T.A. Clair, P.J. Dillon, C.T. Driscoll, M. Forsius, M. Johannessen, et al. 1999. Regional trends in aquatic recovery from acidification in North America and Europe. Nature 401: 575–578.CrossRefGoogle Scholar
  27. Straškrabová, V., C. Callieri, P. Carrillo, L. Cruz-Pizarro, J. Fott, P. Hartman, M. Macek, J.M. Medina-Sánchez, et al. 1999. Investigations on pelagic food webs in mountain lakes—Aims and methods. Journal of Limnology 58: 77–87.Google Scholar
  28. ter Braak, C.J.F., and P. Šmilauer. 2002. CANOCO Reference Manual and Users Guide to Canoco for Windows: Software for Canonical Community Ordination (Version 4.5). Ithaca, NY: Microcomputer Power.Google Scholar
  29. Veselý, J., J. Hruška, S.A. Norton, and C.E. Johnson. 1998a. Trends in water chemistry of acidified Bohemian lakes from 1984 to 1995: I. Major solutes. Water, Air, and Soil Pollution 108: 107–127.CrossRefGoogle Scholar
  30. Veselý, J., J. Hruška, and S.A. Norton. 1998b. Trends in water chemistry of acidified Bohemian lakes from 1984 to 1995: II. Trace elements and aluminium. Water, Air, and Soil Pollution 108: 425–443.CrossRefGoogle Scholar
  31. Vrba, J., J. Kopáček, and J. Fott. 2000. Long-term limnological research of the Bohemian Forest lakes and their recent status. Silva Gabreta 4: 7–27.Google Scholar
  32. Vrba, J., J. Kopáček, J. Fott, L. Kohout, L. Nedbalová, M. Pražáková, T. Soldán, and J. Schaumburg. 2003a. Long-term studies (1871–2000) on acidification and recovery of lakes in the Bohemian Forest (central Europe). Science of the Total Environment 310: 73–85.CrossRefGoogle Scholar
  33. Vrba, J., J. Nedoma, L. Kohout, J. Kopáček, L. Nedbalová, P. Ráčková, and K. Šimek. 2003b. Massive occurrence of heterotrophic filaments in acidified lakes: Seasonal dynamics and composition. FEMS Microbiology Ecology 46: 281–294.CrossRefGoogle Scholar
  34. Vrba, J., J. Kopáček, T. Bittl, J. Nedoma, A. Štrojsová, L. Nedbalová, L. Kohout, and J. Fott. 2006. A key role of aluminium in phosphorus availability, food web structure, and plankton dynamics in strongly acidified lakes. Biologia 61: S441–S451.CrossRefGoogle Scholar
  35. Wright, R.F., T. Larssen, L. Camarero, B.J. Cosby, R.C. Ferrier, R. Helliwell, M. Forsius, A. Jenkins, et al. 2005. Recovery of acidified European surface waters. Environmental Science and Technology 39: 64A–72A.CrossRefGoogle Scholar
  36. Yan, N.D., B. Leung, W.B. Keller, S.E. Arnott, J.M. Gunn, and G.G. Raddum. 2003. Developing conceptual frameworks for the recovery of aquatic biota from acidification. AMBIO 32: 165–169.Google Scholar

Copyright information

© Royal Swedish Academy of Sciences 2013

Authors and Affiliations

  • Jaroslav Vrba
    • 1
  • Jiří Kopáček
    • 2
  • Jan Fott
    • 3
  • Linda Nedbalová
    • 3
  1. 1.Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
  2. 2.Institute of HydrobiologyBiology Centre AS CRCeske BudejoviceCzech Republic
  3. 3.Faculty of ScienceCharles UniversityPragueCzech Republic

Personalised recommendations