Skip to main content

Advertisement

Log in

Burning Water: A Comparative Analysis of the Energy Return on Water Invested

  • Review Paper
  • Published:
AMBIO Aims and scope Submit manuscript

Some scientists now proudly claim that the food problem is on the verge of being completely solved by the imminent conversion on an industrial scale of mineral oil into food protein—an inept thought in the view of what we know about the entropic problem. The logic of this problem justifies instead the prediction that, under the pressure of necessity, man will ultimately turn to the contrary conversion, of vegetable products into gasoline (if he will still have any use for it).

Nicholas Georgescu-Roegen (1973)

Abstract

While various energy-producing technologies have been analyzed to assess the amount of energy returned per unit of energy invested, this type of comprehensive and comparative approach has rarely been applied to other potentially limiting inputs such as water, land, and time. We assess the connection between water and energy production and conduct a comparative analysis for estimating the energy return on water invested (EROWI) for several renewable and non-renewable energy technologies using various Life Cycle Analyses. Our results suggest that the most water-efficient, fossil-based technologies have an EROWI one to two orders of magnitude greater than the most water-efficient biomass technologies, implying that the development of biomass energy technologies in scale sufficient to be a significant source of energy may produce or exacerbate water shortages around the globe and be limited by the availability of fresh water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alcamo, J., et al. 2005. Changes in nature’s balance sheet: Model based estimates of future worldwide ecosystem services. Ecology and Society 10(2): 19.

    Google Scholar 

  • Berndes, G. 2002. Bioenergy and water—the implications of large-scale bioenergy production for water use and supply. Global Environmental Change 12: 253–271.

    Article  Google Scholar 

  • Berndes, G. 2008. Bioenergy—a new large user of scarce water? In Food and water, ed. J. Förare. Formas: Forskningsrådet för miljö, areella näringar och samhällsbyggande.

    Google Scholar 

  • Berndes, G., C. Azar, T. Kaberger, and D. Abrahamson. 2001. The feasibility of large-scale lignocellulose-based bioenergy production. Biomass & Bioenergy 20: 371–383.

    Article  CAS  Google Scholar 

  • Börjesson, P. 2008. Good or bad ethanol—what determines this? Report no. 65, Environmental and Energy Systems Studies, Department of Technology and Society, Lund University, Sweden.

  • Cleveland, C.J. 1992. Energy surplus and energy quality in the extraction of fossil fuels in the US. Ecological Economics 6: 139–162.

    Article  Google Scholar 

  • Cleveland, C.J. 2005. Net energy from oil and gas extraction in the United States. Energy 30: 769–782.

    Article  Google Scholar 

  • Cleveland, C.J., R. Costanza, C. Hall, and R. Kaufmann. 1984. Energy and the US economy: A biophysical perspective. Science 225: 890–897.

    Article  Google Scholar 

  • Drought threatens crop catastrophe. The Guardian, Apr 20, 2007. www.guardian.co.uk/australia/story/0,,2061761,00.html.

  • Farrell, A., R. J. Plevin, B. T. Turner, A. D. Jones, M. O’Hare, and D. M. Kammen. 2006. Ethanol can contribute to energy and environmental goals. Science 311: 506–508.

    Google Scholar 

  • Flynn, H., and T. Bradford. 2006. Polysilicon: Supply, demand, and implications for the PV industry. Cambridge: The Prometheus Institute for Sustainable Development.

    Google Scholar 

  • Georgescu-Roegen, N. 1973. The entropy law and the economic problem. In Toward a steady state economy, ed. H.E. Daly. San Francisco: W. H. Freeman and Company.

    Google Scholar 

  • Giampietro, M., S. Ulgiati, and D. Pimental. 1997. Feasibility of large-scale biofuel production. BioScience 47: 587–600.

    Article  Google Scholar 

  • Gleick, P.H. 2000. The world’s water. Washington, DC: Island Press.

    Google Scholar 

  • Goldemberg, J. 2007. Ethanol for a sustainable energy future. Science 315: 808–810.

    Article  CAS  Google Scholar 

  • Hagens, N.J., R. Costanza, and K. Mulder. 2006. Energy returns on ethanol production. Science 312: 1746.

    Article  CAS  Google Scholar 

  • Hall, C.A., C. Cleveland, and R. Kaufmann. 1986. Energy and resource quality: The ecology of the economic process. New York: Wiley.

    Google Scholar 

  • Hill, J., E. Nelson, D. Tilman, S. Polasky, and D. Tiffany. 2006. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proceedings of the National Academy of Science 103: 11206–11210.

    Article  CAS  Google Scholar 

  • Hutson, S.S., N. L. Barber, J. F. Kenny, K. S. Linsey, D. S. Lumia, and M. A. Maupin. 2004. Estimated use of water in the United States in 2000. US Geological Survey, Circular 1268.

  • Kannan, R., C. Tso, R. Osman, and H. Ho. 2004. LCA-LCCA of oil fired steam turbine power. Energy Conversion and Management 45: 3093–3107.

    Article  Google Scholar 

  • Kennedy, D. 2007. The biofuels conundrum. Science 316: 515.

    Article  CAS  Google Scholar 

  • Lynd, L., and M.Q. Wang. 2004. A product-nonspecific framework for evaluating the potential of biomass-based products to displace fossil fuels. Journal of Industrial Ecology 7: 17–32.

    Article  Google Scholar 

  • Mann, M.K., and P. Spath. 1997. Life cycle assessment of a biomass gasification combined-cycle system. NREL/TP-430-23076. Golden: National Renewable Energy Laboratory.

  • Mortimer, N.D., M.A. Elsayed, and R. Matthews. 2003. Carbon and energy balances for a range of biofuel options. Sheffield: Resources Research Unit, Sheffield Hallam University.

    Google Scholar 

  • Mulder, K., and N. Hagens. 2008. Energy return on investment—towards a consistent framework. AMBIO 37(2): 74–79.

    Article  Google Scholar 

  • National Research Council. 2008. Water implications of biofuels production in the United States. Report prepared by the Committee on water implications of biofuels production in the United States, National Research Council, ISBN: 978-0-309-11361-8.

  • Odling-Smee, L. 2007. Biofuels bandwagon hits a rut. Nature 446: 483.

    Article  Google Scholar 

  • Odum, H.T. 1973. Energy, ecology, and economics. AMBIO 2: 220–227.

    Google Scholar 

  • Oki, T., and S. Kanae. 2006. Global hydrological cycles and world water resources. Science 313: 1068–1072.

    Article  CAS  Google Scholar 

  • Pimentel, D., et al. 1997. Water resources, agriculture, the environment and society. BioScience 47: 97–106.

    Article  Google Scholar 

  • Ragauskas, A.J., C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney, C. A. Eckert, W. J. Frederick, Jr., J. P. Hallett, et al. 2006. The path forward for biofuels and biomaterials. Science 311: 484–489.

    Google Scholar 

  • Renault, D., and W. Wallender. 2006. Nutritional water productivity and diets. Agricultural Water Management 45: 275–296.

    Article  Google Scholar 

  • Rijsberman, F.R. 2006. Water scarcity: Fact or fiction. Agricultural Water Management 80: 5–22.

    Article  Google Scholar 

  • Sanderson, K. 2007. A field in ferment. Nature 444: 673–676.

    Article  Google Scholar 

  • Sheehan, J., V. Camobreco, J. Duffield, M. Graboski, and H. Shapouri. 1998. An overview of biodiesel and petroleum diesel life cycles. NREL/TP-580-24772. Golden: National Renewable Energy Laboratory.

  • Smil, V. 2006. 21st century energy: Some sobering thoughts. OECD Observer 258/59.

  • Soddy, F. 1933. Wealth, virtual wealth and debt; the solution of the economic paradox, 2nd ed. New York: E.P. Dutton.

    Google Scholar 

  • Spreng, D.T. 1988. Net-energy analysis and the energy requirements of energy systems. New York: Praeger.

    Google Scholar 

  • Tainter, J.A., T. Allen, and T. Hoekstra. 2006. Energy transformations and post-normal science. Energy 31: 44–58.

    Article  Google Scholar 

  • Tilman, D., P. Reich, and J.M.H. Knops. 2006a. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441: 629–632.

    Article  CAS  Google Scholar 

  • Tilman, D., J. Hill, and C. Lehman. 2006b. Carbon negative biofuels from low impact high diversity grassland biomass. Science 314: 1598–1600.

    Article  CAS  Google Scholar 

  • United States Department of Agriculture—National Agriculture Statistics Service. 2007. http://www.nass.usda.gov/index.asp.

  • Vorosmarty, C.J., P. Green, J. Salisbury, and R.B. Lammers. 2000. Global water resources: Vulnerability from climate change and population growth. Science 289: 284–288.

    Article  CAS  Google Scholar 

  • Webber, M., and C. King. 2008. The water intensity of the plugged-in automotive economy. Environmental Science & Technology 42(12): 4305–4311.

    Article  Google Scholar 

Additional Data References for Tables 2 and 3

  • Alberta Chamber of Resources. 2006. Calgary, Alberta, Canada.

  • De Oliveira, M.E.D., B.E. Vaughan, and E.J. Rykiel. 2005. Ethanol as fuel: Energy, carbon dioxide balances, and ecological footprint. BioScience 55: 593–602.

    Article  Google Scholar 

  • deBoer, I. 2003. Environmental impact assessment of conventional and organic milk production. Livestock Production Science 80: 69–77.

    Article  Google Scholar 

  • Griffiths, M., A. Taylor, and D. Woynillowicz. 2006. Troubled waters, troubling trends: Technology and policy options to reduce water use in oil and oil sands development in Alberta. Drayton Valley: The Pembina Institute.

    Google Scholar 

  • International Standard Organization. 1997. Environmental management—life cycle assessment—principles and framework. Geneva: ISO.

    Google Scholar 

  • Kidd, S. 2004. Nuclear: Is there any net energy addition? Nuclear Engineering International 49: 12–13.

    Google Scholar 

  • No author. 2006. Deer Creek Energy Limited: Joslyn SAGD Project—phase 2 application for approval. Environmental Impact Assessment.

  • Pimentel, D., and T. Patzek. 2005. Ethanol production: Energy and economic issues related to U.S. and Brazilian sugarcane. Natural Resources Research 14: 65–76.

    Article  CAS  Google Scholar 

  • Rafaschieri, A., M. Rapaccini, and G. Manfrida. 1999. Life cycle assessment of electricity production from poplar energy crops compared with conventional fossil fuels. Energy Conversion and Management 40: 1477–1493.

    Article  CAS  Google Scholar 

  • Shapouri, H., J. Duffield, and M. Wang. 2003. The energy balance of corn ethanol revisited. Transactions of the ASAE 46: 959–968.

    CAS  Google Scholar 

  • Smeets, E., M. Junginger, A. Faaij, A. Walter, and P. Dolzan. 2006. Sustainability of Brazilian bio-ethanol. NWS-E-2006-110. Utrecht: Copernicus University.

  • Stiegel, G.J., et al. 2006. Estimating freshwater needs to meet future thermoelectric generation requirements. Pittsburgh: DOE/NETL-2006/1235, National Energy Technology Laboratory.

    Google Scholar 

  • Tyson, S.K., C.J. Riley, and K.K. Humphreys. 1993. Fuel cycle evaluations of biomass—ethanol and reformulated gasoline. NREL/TP-463-4950. Golden: National Renewable Energy Laboratory.

  • U.S. Department of Agriculture. 2005. Oilseed yearbook.

  • U.S. Department of Energy. http://www.eere.energy.gov/afdc/.

Download references

Acknowledgments

Kenneth Mulder was supported by a grant from the Andrew W. Mellon Foundation. Nate Hagens was supported by a grant funded by the Moore Foundation. Brendan Fisher was supported by a grant from the Leverhulme Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Mulder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulder, K., Hagens, N. & Fisher, B. Burning Water: A Comparative Analysis of the Energy Return on Water Invested. AMBIO 39, 30–39 (2010). https://doi.org/10.1007/s13280-009-0003-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-009-0003-x

Keywords

Navigation