Skip to main content
Log in

The link stream of contacts in a whole hospital

  • Original Article
  • Published:
Social Network Analysis and Mining Aims and scope Submit manuscript

Abstract

We analyse a huge and very precise trace of contact data collected by a network of sensors during 6 months on the entire population of a rehabilitation hospital. We investigate both the topological structure of the average daily link stream of contacts in the hospital and the temporal structure of the evolution of these contacts hour by hour. Our main aims are to unveil striking properties of these two structures in the considered hospital, and to present a methodology that can be used for analysing any link stream where nodes are classified into groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Notes

  1. More than 99% of individuals accepted to participate and registered for the experiment.

  2. The sending time of the different devices are not synchronised but their internal clocks are.

  3. Note that, because of the way we slice the time in slots of 30 s, the condition “\(t_1-t_2\) is a multiple of 30 s” holds for any \(t_1\) and for any \(t_2\) being the bound of some interval, even if they do not bound the same interval of contact.

References

  • Bernard H, Fischer R, Mikolajczyk RT, Kretzschmar M, Wildner M (2009) Nurses’ contacts and potential for infectious disease transmission. Emerg Infect Dis 15(9):1438–1444

    Article  Google Scholar 

  • Beutels P, Shkedy Z, Aerts M, Van Damme P (2006) Social mixing patterns for transmission models of close contact infections: exploring self-evaluation and diary-based data collection through a web-based interface. Epidemiol Infect 134:1158–1166

    Article  Google Scholar 

  • Cattuto C, Van den Broeck W, Barrat A, Colizza V, Pinton JF, Vespignani A (2010) Dynamics of person-to-person interactions from distributed RFID sensor networks. PLoS One 5:e11596

    Article  Google Scholar 

  • Davis K, Stewart J, Crouch H, Florez C, Hospenthal D (2004) Methicillin-resistant Staphylococcus aureus (MRSA) nares colonization at hospital admission and its effect on subsequent MRSA infection. Clin Infect Dis 39(6):776–782

    Article  Google Scholar 

  • Eagle N, Pentland A (2006) Reality mining: sensing complex social systems. Person Ubiquitous Comput 10(4):255–268

    Article  Google Scholar 

  • Eames K (2008) Modelling disease spread through random and regular contacts in clustered populations. Theor Popul Biol 73(1):104–111

    Article  MATH  Google Scholar 

  • Edmunds W, Kafatos G, Wallinga J, Mossong J (2006) Mixing patterns and the spread of close-contact infectious diseases. Emerg Themes Epidemiol 3:10

    Article  Google Scholar 

  • Génois M, Vestergaard CL, Fournet J, Panisson A, Bonmarin I, Barrat A (2015) Data on face-to-face contacts in an office building suggest a low-cost vaccination strategy based on community linkers. Netw Sci 3(3):326–347

    Article  Google Scholar 

  • Gundlapalli A, Ma X, Benuzillo J, Pettey W, Greenberg R, Hales J, Leecaster M, Samore M (2009) Social network analyses of patient–healthcare worker interactions: implications for disease transmission. In: AMIA annual symposium proceedings, pp 213–217

  • Halloran E (2006) Invited commentary: challenges of using contact data to understand acute respiratory disease transmission. Am J Epidemiol 164(10):945–946

    Article  Google Scholar 

  • Hornbeck T, Naylor D, Segre A, Thomas G, Herman T, Polgreen P (2012) Using sensor networks to study the effect of peripatetic healthcare workers on the spread of hospital-associated infections. J Infect Dis 206:1549–1557

    Article  Google Scholar 

  • Hui P, Chaintreau A, Scott J, Gass R, Crowcroft J, Diot C (2005) Pocket switched networks and human mobility in conference environments. In: ACM SIGCOMM workshop on delay-tolerant networking (WDTN 2005), ACM, pp 244–251

  • Isella L, Romano M, Barrat A, Cattuto C, Colizza V, Van den Broeck W, Gesualdo F, Pandolfi E, Ravà L, Rizzo C, Tozzi AE (2011) Close encounters in a pediatric ward: measuring face-to-face proximity and mixing patterns with wearable sensors. PLoS One 6(2):e17144

    Article  Google Scholar 

  • Latapy M, Viard T, Magnien C (2017) Stream graphs and link streams for the modeling of interactions over time. CoRR abs/1710.04073

  • Lucet JC, Laouenan C, Chelius G, Veziris N, Lepelletier D, Friggeri A, Abiteboul D, Bouvet E, Mentré F, Fleury E (2012) Electronic sensors for assessing interactions between healthcare workers and patients under airborne precautions. PLoS One 7(5):e37893

    Article  Google Scholar 

  • Martinet L, Crespelle C, fleury E (2014) Dynamic contact network analysis in hospital wards. In: 5th workshop on complex networks (CompleNet 2014), Springer, no. 549 in studies in computational intelligence, pp 241–249

  • Mikolajczyk RT, Akmatov MK, Rastin S, Kretzschmar M (2008) Social contacts of school children and the transmission of respiratory-spread pathogens. Epidemiol Infect 136(6):813–822

    Article  Google Scholar 

  • Molloy M, Reed B (1995) A critical point for random graphs with a given degree sequence. Rand Struct Algorithms 6(2–3):161–180

    Article  MathSciNet  MATH  Google Scholar 

  • Moody J (2002) The importance of relationship timing for diffusion. Soc Forces 81(1):25–56

    Article  Google Scholar 

  • Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, Massari M, Salmaso S, Tomba GS, Wallinga J, Heijne J, Sadkowska-Todys M, Rosinska M, Edmunds WJ (2008) Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med 5(3):e74

    Article  Google Scholar 

  • Muto CA, Jernigan JA, Ostrowsky BE, Richet HM, Jarvis WR, Boyce JM, Farr BM (2003) SHEA guideline for preventing nosocomial transmission of multidrug-resistant strains of Staphylococcus aureus and enterococcus. Infect Control Hosp Epidemiol 24(5):362–386

    Article  Google Scholar 

  • Nijssen S, Bonten M, Weinstein R (2005) Are active microbiological surveillance and subsequent isolation needed to prevent the spread of methicillin-resistant Staphylococcus aureus? Clin Infect Dis 40(3):405–409

    Article  Google Scholar 

  • Obadia T, Opatowski L, Temime L, Herrmann JL, Fleury E, Boëlle PY, Guillemot D (2015a) Interindividual contacts and carriage of methicillin-resistant Staphylococcus aureus: a nested case-control study. Infec Control Hosp Epidemiol 36(8):922–929

    Article  Google Scholar 

  • Obadia T, Silhol R, Opatowski L, Temime L, Legrand J, Thiébaut A, Herrmann JL, Fleury E, Guillemot D, Boëlle PY (2015b) Detailed contact data and the dissemination of Staphylococcus aureus in hospitals. PLoS Comput Biol 11(3):1–16

    Article  Google Scholar 

  • Pastor-Satorras R, Vespignani A (2001) Epidemic spreading in scale-free networks. Phys Rev Lett 86(14):3200–3203

    Article  Google Scholar 

  • Polgreen PM, Tassier TL, Pemmaraju SV, Segre AM (2010) Prioritizing healthcare worker vaccinations on the basis of social network analysis. Infect Control Hosp Epidemiol 31(9):893–900

    Article  Google Scholar 

  • Read JM, Keeling MJ (2003) Disease evolution on networks: the role of contact structure. Proc R Soc B Biol Sci 270(1516):699–708

    Article  Google Scholar 

  • Read JM, Edmunds WJ, Riley S, Lessler J, Cummings DA (2012) Close encounters of the infectious kind: methods to measure social mixing behaviour. Epidemiol Infect 140(12):2117–2130

    Article  Google Scholar 

  • Salathé M, Jones JH (2010) Dynamics and control of diseases in networks with community structure. PLOS Comput Biol 6(4):e1000736

    Article  MathSciNet  Google Scholar 

  • Salathé M, Kazandjieva M, Lee JW, Levis P, Feldman MW, Jones JH (2010) A high-resolution human contact network for infectious disease transmission. PNAS 107(51):22020–22025

    Article  Google Scholar 

  • Smieszek T, Fiebig L, Scholz RW (2009) Models of epidemics: when contact repetition and clustering should be included. Theor Biol Med Model 6:11

    Article  Google Scholar 

  • Stehle J, Voirin N, Barrat A, Cattuto C, Colizza V, Isella L, Regis C, Pinton JF, Khanafer N, Van den Broeck W, Vanhems P (2011a) Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees. BMC Med 9:87

    Article  Google Scholar 

  • Stehle J, Voirin N, Barrat A, Cattuto C, Isella L, Pinton JF, Quaggiotto M, den Broeck WV, Régis C, Lina B, Vanhems P (2011b) High-resolution measurements of face-to-face contact patterns in a primary school. PLoS One 6(8):e23176

    Article  Google Scholar 

  • Temime L, Opatowski L, Pannet Y, Brun-Buisson C, Boëlle PY, Guillemot D (2009) Peripatetic health-care workers as potential superspreaders. PNAS 106(43):18420–18425

    Article  Google Scholar 

  • Vanhems P, Barrat A, Cattuto C, Pinton JF, Khanafer N, Régis C, Ba K, Comte B, Voirin N (2013) Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PLoS One 8(9):e73970

    Article  Google Scholar 

  • Wernitz M, Swidsinski S, Weist K, Sohr D, Witte W, Roloff KFD, Ruden H, Veit S (2005) Effectiveness of a hospital-wide selective screening programme for methicillin-resistant Staphylococcus aureus (MRSA) carriers at hospital admission to prevent hospital-acquired MRSA infections. Clin Microbiol Infect 11(6):457–465

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank all the I-Bird (Individual-Based Investigation of Resistance Dissemination) study group members.

Funding

This study was supported by the European Commission under the Life Science Health Priority of the 6th Framework Program (MOSAR network contract LSHP-CT-2007-037941). This work was performed within the framework of the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR). This work was performed within the framework of the LABEX IBEID (ANR-10-LABX-62). The second author gratefully acknowledges the support from a Grant from Région Rhône-Alpes and from the delegation program of CNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Crespelle.

Additional information

This is a complete and augmented version of the extended abstract that appeared in CompleNet 2014 (Martinet et al. 2014).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinet, L., Crespelle, C., Fleury, E. et al. The link stream of contacts in a whole hospital. Soc. Netw. Anal. Min. 8, 59 (2018). https://doi.org/10.1007/s13278-018-0535-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13278-018-0535-9

Keywords

Navigation