Tumor Biology

, Volume 37, Issue 11, pp 14949–14960 | Cite as

Targeting Netrin-1 in glioblastoma stem-like cells inhibits growth, invasion, and angiogenesis

  • Tanwarat Sanvoranart
  • Aungkura Supokawej
  • Pakpoom Kheolamai
  • Yaowalak U-pratya
  • Niphon Poungvarin
  • Sith Sathornsumetee
  • Surapol Issaragrisil
Original Article


Glioblastoma (GBM) is an aggressive malignant brain tumor that still lacks effective therapy. Glioblastoma stem cells (GBM-SCs) were identified to contribute to aggressive phenotypes and poor clinical outcomes for GBM. Netrin-1, an axon guidance molecule, has been found in several tumors in adults. However, the role of Netrin-1 in GBM-SCs remains largely unknown. In this study, CD133-positive U251 GBM cells were used as a putative GBM-SC population to identify the functions of Netrin-1. Using lentiviral transduction, Netrin-1 miR RNAi vectors were transduced into CD133-positive U251 cells. We demonstrated that cell proliferation and survival were decreased following targeted deletion of Netrin-1. Cell invasion was dramatically diminished in Netrin-1 knockdown GBM-SCs. Moreover, Netrin-1 knockdown GBM-SCs exhibited less proangiogenic activity. In conclusion, Netrin-1 may represent a therapeutic target in glioblastoma.


Glioblastoma Glioblastoma stem-like cells Netrin-1 Targeting Axon guidance 



The authors thank to the Faculty of Medical Technology, Mahidol University for facility support, Siriraj Core Research Facility (SiCRF) for assistance with flow cytometry and members of Siriraj Center of Excellence for Stem Cell Research (SiSCR) for their supports and helpful discussions.

Compliance with ethical standards


This research project was funded by grants from Mahidol University, Thailand Research Fund (Grant no. RTA 488-0007), the Commission on Higher Education (Grant no. CHE-RES-RG-49). S.I. is a Senior Research Scholar of Thailand Research Fund. T.S. was supported by the Thailand Research Funds through the Royal Golden Jubilee PhD Program (PhD/0199/2550). S.S. is partially supported by grants from the National Nanotechnology Center (NANOTEC), NSTDA, Ministry of Science and Technology through its program of Center of Excellence Network and Faculty of Medicine Siriraj Hospital, Mahidol University.

Conflicts of interest


Supplementary material

13277_2016_5314_MOESM1_ESM.docx (28 kb)
ESM 1 (DOCX 28 kb)
13277_2016_5314_MOESM2_ESM.docx (18 kb)
Supplementary Table 1 (DOCX 18 kb)
13277_2016_5314_MOESM3_ESM.docx (18 kb)
Supplementary Table 2 (DOCX 17 kb)
13277_2016_5314_MOESM4_ESM.docx (17 kb)
Supplementary Table 3 (DOCX 17 kb)
13277_2016_5314_MOESM5_ESM.docx (281 kb)
Supplementary Fig. 1 (DOCX 281 kb)
13277_2016_5314_MOESM6_ESM.docx (2 mb)
Supplementary Fig. 2 (DOCX 2055 kb)
13277_2016_5314_MOESM7_ESM.docx (777 kb)
Supplementary Fig. 3 (DOCX 777 kb)
13277_2016_5314_MOESM8_ESM.docx (1.3 mb)
Supplementary Fig. 4 (DOCX 1338 kb)
13277_2016_5314_MOESM9_ESM.docx (39 kb)
Supplementary Fig. 5 (DOCX 39 kb)
13277_2016_5314_MOESM10_ESM.docx (392 kb)
Supplementary Fig. 6 (DOCX 392 kb)
13277_2016_5314_MOESM11_ESM.docx (641 kb)
Supplementary Fig. 7 (DOCX 640 kb)


  1. 1.
    Furnari FB, Fenton T, Bachoo RM, et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 2007;21:2683–710.CrossRefPubMedGoogle Scholar
  2. 2.
    Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase iii study: 5-year analysis of the eortc-ncic trial. Lancet Oncol. 2009;10:459–66.CrossRefPubMedGoogle Scholar
  3. 3.
    Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.CrossRefPubMedGoogle Scholar
  4. 4.
    Ostrom QT, Gittleman H, Liao P, et al. Cbtrus statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. Neuro Oncol. 2014;16(Suppl 4):iv1–63.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Urbanska K, Sokolowska J, Szmidt M, Sysa P. Glioblastoma multiforme—an overview. Contemp Oncol (Pozn). 2014;18:307–12.Google Scholar
  6. 6.
    Bello MJ, Alonso ME, Aminoso C, et al. Hypermethylation of the DNA repair gene mgmt: association with tp53 g:C to a:T transitions in a series of 469 nervous system tumors. Mutat Res. 2004;554:23–32.CrossRefPubMedGoogle Scholar
  7. 7.
    Kamiryo T, Tada K, Shiraishi S, et al. Correlation between promoter hypermethylation of the o6-methylguanine-deoxyribonucleic acid methyltransferase gene and prognosis in patients with high-grade astrocytic tumors treated with surgery, radiotherapy, and 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosourea-based chemotherapy. Neurosurgery. 2004;54:349–57 .discussion 57CrossRefPubMedGoogle Scholar
  8. 8.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Collins AT, Berry PA, Hyde C, et al. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65:10946–51.CrossRefPubMedGoogle Scholar
  10. 10.
    Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67:1030–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Ignatova TN, Kukekov VG, Laywell ED, et al. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia. 2002;39:193–206.CrossRefPubMedGoogle Scholar
  12. 12.
    Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8.PubMedGoogle Scholar
  13. 13.
    Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.CrossRefPubMedGoogle Scholar
  14. 14.
    Patel AP, Tirosh I, Trombetta JJ, et al. Single-cell rna-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014;344:1396–401.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Meyer M, Reimand J, Lan X, et al. Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity. Proc Natl Acad Sci U S A. 2015;112:851–6.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Johannessen TC, Wang J, Skaftnesmo KO, et al. Highly infiltrative brain tumours show reduced chemosensitivity associated with a stem cell-like phenotype. Neuropathol Appl Neurobiol. 2009;35:380–93.CrossRefPubMedGoogle Scholar
  17. 17.
    Liu G, Yuan X, Zeng Z, et al. Analysis of gene expression and chemoresistance of cd133+ cancer stem cells in glioblastoma. Mol Cancer. 2006;5:67.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Chen R, Nishimura MC, Bumbaca SM, et al. A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell. 2010;17:362–75.CrossRefPubMedGoogle Scholar
  19. 19.
    Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.CrossRefPubMedGoogle Scholar
  20. 20.
    Yuan X, Curtin J, Xiong Y, et al. Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene. 2004;23:9392–400.CrossRefPubMedGoogle Scholar
  21. 21.
    Graef IA, Wang F, Charron F, et al. Neurotrophins and netrins require calcineurin/nfat signaling to stimulate outgrowth of embryonic axons. Cell. 2003;113:657–70.CrossRefPubMedGoogle Scholar
  22. 22.
    Ming GL, Song HJ, Berninger B, et al. Camp-dependent growth cone guidance by netrin-1. Neuron. 1997;19:1225–35.CrossRefPubMedGoogle Scholar
  23. 23.
    Serafini T, Kennedy TE, Galko MJ, et al. The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans unc-6. Cell. 1994;78:409–24.CrossRefPubMedGoogle Scholar
  24. 24.
    Delloye-Bourgeois C, Brambilla E, Coissieux MM, et al. Interference with netrin-1 and tumor cell death in non-small cell lung cancer. J Natl Cancer Inst. 2009;101:237–47.CrossRefPubMedGoogle Scholar
  25. 25.
    Dumartin L, Quemener C, Laklai H, et al. Netrin-1 mediates early events in pancreatic adenocarcinoma progression, acting on tumor and endothelial cells. Gastroenterology. 2010;138:1595–606 .606 e1-8CrossRefPubMedGoogle Scholar
  26. 26.
    Paradisi A, Maisse C, Coissieux MM, et al. Netrin-1 up-regulation in inflammatory bowel diseases is required for colorectal cancer progression. Proc Natl Acad Sci U S A. 2009;106:17146–51.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Qi Q, Li DY, Luo HR, et al. Netrin-1 exerts oncogenic activities through enhancing yes-associated protein stability. Proc Natl Acad Sci U S A. 2015;112:7255–60.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Akino T, Han X, Nakayama H, et al. Netrin-1 promotes medulloblastoma cell invasiveness and angiogenesis, and demonstrates elevated expression in tumor tissue and urine of patients with pediatric medulloblastoma. Cancer Res. 2014;74:3716–26.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Mazelin L, Bernet A, Bonod-Bidaud C, et al. Netrin-1 controls colorectal tumorigenesis by regulating apoptosis. Nature. 2004;431:80–4.CrossRefPubMedGoogle Scholar
  30. 30.
    Delloye-Bourgeois C, Fitamant J, Paradisi A, et al. Netrin-1 acts as a survival factor for aggressive neuroblastoma. J Exp Med. 2009;206:833–47.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Llambi F, Causeret F, Bloch-Gallego E, Mehlen P. Netrin-1 acts as a survival factor via its receptors unc5h and dcc. EMBO J. 2001;20:2715–22.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Shimizu A, Nakayama H, Wang P, et al. Netrin-1 promotes glioblastoma cell invasiveness and angiogenesis by multiple pathways including activation of rhoa, cathepsin b, and camp-response element-binding protein. J Biol Chem. 2013;288:2210–22.CrossRefPubMedGoogle Scholar
  33. 33.
    Ylivinkka I, Hu Y, Chen P, et al. Netrin-1-induced activation of notch signaling mediates glioblastoma cell invasion. J Cell Sci. 2013;126:2459–69.CrossRefPubMedGoogle Scholar
  34. 34.
    Fitamant J, Guenebeaud C, Coissieux MM, et al. Netrin-1 expression confers a selective advantage for tumor cell survival in metastatic breast cancer. Proc Natl Acad Sci U S A. 2008;105:4850–5.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Galli R, Binda E, Orfanelli U, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004;64:7011–21.CrossRefPubMedGoogle Scholar
  36. 36.
    Goffart N, Kroonen J, Rogister B. Glioblastoma-initiating cells: relationship with neural stem cells and the micro-environment. Cancers (Basel). 2013;5:1049–71.CrossRefGoogle Scholar
  37. 37.
    Uchida N, Buck DW, He D, et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A. 2000;97:14720–5.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Calabrese C, Poppleton H, Kocak M, et al. A perivascular niche for brain tumor stem cells. Cancer Cell. 2007;11:69–82.CrossRefPubMedGoogle Scholar
  39. 39.
    Wang W, Reeves WB, Pays L, et al. Netrin-1 overexpression protects kidney from ischemia reperfusion injury by suppressing apoptosis. Am J Pathol. 2009;175:1010–8.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Bao S, Wu Q, Sathornsumetee S, et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 2006;66:7843–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Tadagavadi RK, Wang W, Ramesh G. Netrin-1 regulates th1/th2/th17 cytokine production and inflammation through unc5b receptor and protects kidney against ischemia-reperfusion injury. J Immunol. 2010;185:3750–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Tsuchiya A, Hayashi T, Deguchi K, et al. Expression of netrin-1 and its receptors dcc and neogenin in rat brain after ischemia. Brain Res. 2007;1159:1–7.CrossRefPubMedGoogle Scholar
  43. 43.
    Mehlen P, Guenebeaud C. Netrin-1 and its dependence receptors as original targets for cancer therapy. Curr Opin Oncol. 2010;22:46–54.CrossRefPubMedGoogle Scholar
  44. 44.
    Forcet C, Stein E, Pays L, et al. Netrin-1-mediated axon outgrowth requires deleted in colorectal cancer-dependent mapk activation. Nature. 2002;417:443–7.CrossRefPubMedGoogle Scholar
  45. 45.
    Shekarabi M, Moore SW, Tritsch NX, et al. Deleted in colorectal cancer binding netrin-1 mediates cell substrate adhesion and recruits cdc42, rac1, pak1, and n-wasp into an intracellular signaling complex that promotes growth cone expansion. J Neurosci. 2005;25:3132–41.CrossRefPubMedGoogle Scholar
  46. 46.
    Liu G, Beggs H, Jurgensen C, et al. Netrin requires focal adhesion kinase and src family kinases for axon outgrowth and attraction. Nat Neurosci. 2004;7:1222–32.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Rajasekharan S, Bin JM, Antel JP, Kennedy TEA. Central role for rhoa during oligodendroglial maturation in the switch from netrin-1-mediated chemorepulsion to process elaboration. J Neurochem. 2010;113:1589–97.PubMedGoogle Scholar
  48. 48.
    Lepekhin EA, Eliasson C, Berthold CH, et al. Intermediate filaments regulate astrocyte motility. J Neurochem. 2001;79:617–25.CrossRefPubMedGoogle Scholar
  49. 49.
    Hagemann C, Anacker J, Ernestus RI, Vince GHA. Complete compilation of matrix metalloproteinase expression in human malignant gliomas. World J Clin Oncol. 2012;3:67–79.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Fanjul-Fernandez M, Folgueras AR, Cabrera S, Lopez-Otin C. Matrix metalloproteinases: evolution, gene regulation and functional analysis in mouse models. Biochim Biophys Acta. 2010;1803:3–19.CrossRefPubMedGoogle Scholar
  51. 51.
    McCready J, Broaddus WC, Sykes V, Fillmore HL. Association of a single nucleotide polymorphism in the matrix metalloproteinase-1 promoter with glioblastoma. Int J Cancer. 2005;117:781–5.CrossRefPubMedGoogle Scholar
  52. 52.
    Komatsu K, Nakanishi Y, Nemoto N, et al. Expression and quantitative analysis of matrix metalloproteinase-2 and −9 in human gliomas. Brain Tumor Pathol. 2004;21:105–12.CrossRefPubMedGoogle Scholar
  53. 53.
    Wang M, Wang T, Liu S, et al. The expression of matrix metalloproteinase-2 and −9 in human gliomas of different pathological grades. Brain Tumor Pathol. 2003;20:65–72.CrossRefPubMedGoogle Scholar
  54. 54.
    Rao JS. Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer. 2003;3:489–501.CrossRefPubMedGoogle Scholar
  55. 55.
    Lakka SS, Gondi CS, Yanamandra N, et al. Inhibition of cathepsin b and mmp-9 gene expression in glioblastoma cell line via rna interference reduces tumor cell invasion, tumor growth and angiogenesis. Oncogene. 2004;23:4681–9.CrossRefPubMedGoogle Scholar
  56. 56.
    Eeckhout Y, Vaes G. Further studies on the activation of procollagenase, the latent precursor of bone collagenase. Effects of lysosomal cathepsin b, plasmin and kallikrein, and spontaneous activation. Biochem J. 1977;166:21–31.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Tu T, Zhang C, Yan H, et al. Cd146 acts as a novel receptor for netrin-1 in promoting angiogenesis and vascular development. Cell Res. 2015;25:275–87.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Tanwarat Sanvoranart
    • 1
  • Aungkura Supokawej
    • 1
  • Pakpoom Kheolamai
    • 2
  • Yaowalak U-pratya
    • 3
    • 4
  • Niphon Poungvarin
    • 5
  • Sith Sathornsumetee
    • 5
    • 6
  • Surapol Issaragrisil
    • 3
    • 4
  1. 1.Department of Clinical Microscopy, Faculty of Medical TechnologyMahidol UniversityNakhon PathomThailand
  2. 2.Division of Cell Biology, Department of Pre-clinical Sciences, Faculty of MedicineThammasat UniversityPathumthaniThailand
  3. 3.Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
  4. 4.Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
  5. 5.Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
  6. 6.NANOTEC-Mahidol University Center of Excellence in Nanotechnology for Cancer Diagnosis and Treatment, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand

Personalised recommendations