Skip to main content

Advertisement

Log in

Noninvasive detection of gastric cancer

  • Review
  • Published:
Tumor Biology

Abstract

Gastric cancer (GC) is the fifth most common cancer and the third common cause of cancer death worldwide. Endoscopy is the most effective method for GC screening, but its application is limited by the invasion. Therefore, continuous efforts have been made to develop noninvasive methods for GC detection and promising results have been reported. Here, we review the advances in GC detection by protein and nucleic acid tumor markers, circulating tumor cells, and tumor-associated autoantibodies in peripheral blood. Some potential new noninvasive methods for GC detection are also reviewed, including exhaled breath analysis, blood spectroscopy analysis and molecular imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer J Int du Cancer. 2015;136(5):E359–86. doi:10.1002/ijc.29210.

    Article  CAS  Google Scholar 

  2. Lu J, Huang CM, Zheng CH, Li P, Xie JW, Wang JB, et al. Consideration of tumor size improves the accuracy of TNM predictions in patients with gastric cancer after curative gastrectomy. Surg Oncol. 2013;22(3):167–71. doi:10.1016/j.suronc.2013.05.002.

    Article  PubMed  Google Scholar 

  3. Choi KS, Jun JK, Park EC, Park S, Jung KW, Han MA, et al. Performance of different gastric cancer screening methods in Korea: a population-based study. PLoS One. 2012;7(11):e50041. doi:10.1371/journal.pone.0050041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sturgeon CM, Duffy MJ, Hofmann BR, Lamerz R, Fritsche HA, Gaarenstroom K, et al. National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines for use of tumor markers in liver, bladder, cervical, and gastric cancers. Clin Chem. 2010;56(6):e1–48. doi:10.1373/clinchem.2009.133124.

    Article  CAS  PubMed  Google Scholar 

  5. Lam KW, Lo SC. Discovery of diagnostic serum biomarkers of gastric cancer using proteomics. Proteomics Clin Appl. 2008;2(2):219–28. doi:10.1002/prca.200780015.

    Article  CAS  PubMed  Google Scholar 

  6. Shimada H, Noie T, Ohashi M, Oba K, Takahashi Y. Clinical significance of serum tumor markers for gastric cancer: a systematic review of literature by the Task Force of the Japanese Gastric Cancer Association. Gastric Cancer: Off J Int Gastric Cancer Assoc Jpn Gastric Cancer Assoc. 2014;17(1):26–33. doi:10.1007/s10120-013-0259-5.

    Article  CAS  Google Scholar 

  7. Ng EW, Wong MY, Poon TC. Advances in MALDI mass spectrometry in clinical diagnostic applications. Top Curr Chem. 2014;336:139–75. doi:10.1007/128_2012_413.

    Article  CAS  PubMed  Google Scholar 

  8. Mateo J, Gerlinger M, Rodrigues DN, de Bono JS. The promise of circulating tumor cell analysis in cancer management. Genome Biol. 2014;15(8):448. doi:10.1186/s13059-014-0448-5.

    Article  PubMed  PubMed Central  Google Scholar 

  9. He CZ, Zhang KH, Li Q, Liu XH, Hong Y, Lv NH. Combined use of AFP, CEA, CA125 and CAl9-9 improves the sensitivity for the diagnosis of gastric cancer. BMC Gastroenterol. 2013;13:87. doi:10.1186/1471-230x-13-87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang AP, Liu J, Lei HY, Zhang QW, Zhao L, Yang GH. CA72-4 combined with CEA, CA125 and CAl9-9 improves the sensitivity for the early diagnosis of gastric cancer. Clin Chim Acta; Int J Clin Chem. 2014;437:183–6. doi:10.1016/j.cca.2014.07.034.

    Article  CAS  Google Scholar 

  11. Li Y, Yang Y, Lu M, Shen L. Predictive value of serum CEA, CA19-9 and CA72.4 in early diagnosis of recurrence after radical resection of gastric cancer. Hepato-Gastroenterology. 2011;58(112):2166–70. doi:10.5754/hge11753.

    CAS  PubMed  Google Scholar 

  12. Lai H, Jin Q, Lin Y, Mo X, Li B, He K, et al. Combined use of lysyl oxidase, carcino-embryonic antigen, and carbohydrate antigens improves the sensitivity of biomarkers in predicting lymph node metastasis and peritoneal metastasis in gastric cancer. Tumour Biol: J Int Soc Oncodev Biol Med. 2014;35(10):10547–54. doi:10.1007/s13277-014-2355-5.

    Article  CAS  Google Scholar 

  13. Jiang M, Gu G, Ni B, Wang W, Shi J, Liao P, et al. Detection of serum protein biomarkers by surface enhanced laser desorption/ionization in patients with adenocarcinoma of the lung. Asia Pac J Clin Oncol. 2014;10(2):e7–12. doi:10.1111/ajco.12057.

    Article  PubMed  Google Scholar 

  14. Liu W, Yang Q, Liu B, Zhu Z. Serum proteomics for gastric cancer. Clin Chim Acta; Int J Clin Chem. 2014;431:179–84. doi:10.1016/j.cca.2014.02.001.

    Article  CAS  Google Scholar 

  15. Lu HB, Zhou JH, Ma YY, Lu HL, Tang YL, Zhang QY, et al. Five serum proteins identified using SELDI-TOF-MS as potential biomarkers of gastric cancer. Jpn J Clin Oncol. 2010;40(4):336–42. doi:10.1093/jjco/hyp175.

    Article  PubMed  Google Scholar 

  16. Law KP, Han TL, Tong C, Baker PN. Mass spectrometry-based proteomics for pre-eclampsia and preterm birth. Int J Mol Sci. 2015;16(5):10952–85. doi:10.3390/ijms160510952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Umemura H, Togawa A, Sogawa K, Satoh M, Mogushi K, Nishimura M, et al. Identification of a high molecular weight kininogen fragment as a marker for early gastric cancer by serum proteome analysis. J Gastroenterol. 2011;46(5):577–85. doi:10.1007/s00535-010-0369-3.

    Article  CAS  PubMed  Google Scholar 

  18. Subbannayya Y, Mir SA, Renuse S, Manda SS, Pinto SM, Puttamallesh VN, et al. Identification of differentially expressed serum proteins in gastric adenocarcinoma. J Proteome. 2015. doi:10.1016/j.jprot.2015.04.021.

    Google Scholar 

  19. Thaysen-Andersen M, Packer NH. Advances in LC-MS/MS-based glycoproteomics: getting closer to system-wide site-specific mapping of the N- and O-glycoproteome. Biochim Biophys Acta. 2014;1844(9):1437–52. doi:10.1016/j.bbapap.2014.05.002.

    Article  CAS  PubMed  Google Scholar 

  20. von Lampe B, Stallmach A, Riecken EO. Altered glycosylation of integrin adhesion molecules in colorectal cancer cells and decreased adhesion to the extracellular matrix. Gut. 1993;34(6):829–36.

    Article  Google Scholar 

  21. Brockhausen I. Mucin-type O-glycans in human colon and breast cancer: glycodynamics and functions. EMBO Rep. 2006;7(6):599–604. doi:10.1038/sj.embor.7400705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu Y, Zhang L, Hu G. Potential application of alternatively glycosylated serum MUC1 and MUC5AC in gastric cancer diagnosis. Biol: J Int Assoc Biol Stand. 2009;37(1):18–25. doi:10.1016/j.biologicals.2008.08.002.

    Article  CAS  Google Scholar 

  23. Chirwa N, Govender D, Ndimba B, Lotz Z, Tyler M, Panieri E, et al. A 40-50 kDa glycoprotein associated with mucus is identified as alpha-1-acid glycoprotein in carcinoma of the stomach. J Cancer. 2012;3:83–92. doi:10.7150/jca.3737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kaplan MA, Kucukoner M, Inal A, Urakci Z, Evliyaoglu O, Firat U, et al. Relationship between serum soluble vascular adhesion protein-1 level and gastric cancer prognosis. Oncol Res Treat. 2014;37(6):340–4. doi:10.1159/000362626.

    Article  CAS  PubMed  Google Scholar 

  25. Schiel JE. Glycoprotein analysis using mass spectrometry: unraveling the layers of complexity. Anal Bioanal Chem. 2012;404(4):1141–9. doi:10.1007/s00216-012-6185-2.

    Article  CAS  PubMed  Google Scholar 

  26. Kolli V, Schumacher KN, Dodds ED. Engaging challenges in glycoproteomics: recent advances in MS-based glycopeptide analysis. Bioanalysis. 2015;7(1):113–31. doi:10.4155/bio.14.272.

    Article  CAS  PubMed  Google Scholar 

  27. Lim JB, Kim DK, Chung HW. Clinical significance of serum thymus and activation-regulated chemokine in gastric cancer: potential as a serum biomarker. Cancer Sci. 2014;105(10):1327–33. doi:10.1111/cas.12505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tas F, Yasasever CT, Karabulut S, Tastekin D, Duranyildiz D. Serum transforming growth factor-beta1 levels may have predictive and prognostic roles in patients with gastric cancer. Tumour Biol: J Int Soc Oncodev Biol Med. 2015;36(3):2097–103. doi:10.1007/s13277-014-2817-9.

    Article  CAS  Google Scholar 

  29. Liu W, Liu B, Xin L, Zhang Y, Chen X, Zhu Z, et al. Down-regulated expression of complement factor I: a potential suppressive protein for gastric cancer identified by serum proteome analysis. Clin Chim Acta; Int J Clin Chem. 2007;377(1–2):119–26. doi:10.1016/j.cca.2006.09.005.

    Article  CAS  Google Scholar 

  30. Chong PK, Lee H, Loh MC, Choong LY, Lin Q, So JB, et al. Upregulation of plasma C9 protein in gastric cancer patients. Proteomics. 2010;10(18):3210–21. doi:10.1002/pmic.201000127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schiess R, Wollscheid B, Aebersold R. Targeted proteomic strategy for clinical biomarker discovery. Mol Oncol. 2009;3(1):33–44. doi:10.1016/j.molonc.2008.12.001.

    Article  CAS  PubMed  Google Scholar 

  32. Chang WC, Hsu PI, Chen YY, Hsiao M, Lu PJ, Chen CH. Observation of peptide differences between cancer and control in gastric juice. Proteomics Clin Appl. 2008;2(1):55–62. doi:10.1002/prca.200780066.

    Article  PubMed  CAS  Google Scholar 

  33. Deng K, Lin S, Zhou L, Geng Q, Li Y, Xu M, et al. Three aromatic amino acids in gastric juice as potential biomarkers for gastric malignancies. Anal Chim Acta. 2011;694(1–2):100–7. doi:10.1016/j.aca.2011.03.053.

    Article  CAS  PubMed  Google Scholar 

  34. Hsu PI, Chen CH, Hsiao M, Wu DC, Lin CY, Lai KH, et al. Diagnosis of gastric malignancy using gastric juice alpha1-antitrypsin. Cancer Epidemiol, Biomark Prev: Publ Am Assoc Cancer Res, Cosponsored Am Soc Prev Oncol. 2010;19(2):405–11. doi:10.1158/1055-9965.EPI-09-0609.

    Article  CAS  Google Scholar 

  35. Wu W, Chung MC. The gastric fluid proteome as a potential source of gastric cancer biomarkers. J Proteome. 2013;90:3–13. doi:10.1016/j.jprot.2013.04.035.

    Article  CAS  Google Scholar 

  36. Tan S, Liang CR, Yeoh KG, So J, Hew CL, Chung MC. Gastrointestinal fluids proteomics. Proteomics Clin Appl. 2007;1(8):820–33. doi:10.1002/prca.200700169.

    Article  CAS  PubMed  Google Scholar 

  37. Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res. 1977;37(3):646–50.

    CAS  PubMed  Google Scholar 

  38. Chen XQ, Bonnefoi H, Pelte MF, Lyautey J, Lederrey C, Movarekhi S, et al. Telomerase RNA as a detection marker in the serum of breast cancer patients. Clin Cancer Res: Off J Am Assoc Cancer Res. 2000;6(10):3823–6.

    CAS  Google Scholar 

  39. Zhu W, Qin W, Atasoy U, Sauter ER. Circulating microRNAs in breast cancer and healthy subjects. BMC Res Notes. 2009;2:89. doi:10.1186/1756-0500-2-89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Park JL, Kim HJ, Choi BY, Lee HC, Jang HR, Song KS, et al. Quantitative analysis of cell-free DNA in the plasma of gastric cancer patients. Oncol Lett. 2012;3(4):921–6. doi:10.3892/ol.2012.592.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim K, Shin DG, Park MK, Baik SH, Kim TH, Kim S, et al. Circulating cell-free DNA as a promising biomarker in patients with gastric cancer: diagnostic validity and significant reduction of cfDNA after surgical resection. Ann Surg Treat Res. 2014;86(3):136–42. doi:10.4174/astr.2014.86.3.136.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zheng Y, Chen L, Li J, Yu B, Su L, Chen X, et al. Hypermethylated DNA as potential biomarkers for gastric cancer diagnosis. Clin Biochem. 2011;44(17–18):1405–11. doi:10.1016/j.clinbiochem.2011.09.006.

    Article  CAS  PubMed  Google Scholar 

  43. Balgkouranidou I, Karayiannakis A, Matthaios D, Bolanaki H, Tripsianis G, Tentes AA, et al. Assessment of SOX17 DNA methylation in cell free DNA from patients with operable gastric cancer. Association with prognostic variables and survival. Clin Chem Lab Med : CCLM / FESCC. 2013;51(7):1505–10. doi:10.1515/cclm-2012-0320.

    Article  CAS  Google Scholar 

  44. Li M, Izpisua Belmonte JC. Roles for noncoding RNAs in cell-fate determination and regeneration. Nat Struct Mol Biol. 2015;22(1):2–4. doi:10.1038/nsmb.2946.

    Article  CAS  PubMed  Google Scholar 

  45. Wang J, Song YX, Ma B, Wang JJ, Sun JX, Chen XW, et al. Regulatory roles of non-coding RNAs in colorectal cancer. Int J Mol Sci. 2015;16(8):19886–919. doi:10.3390/ijms160819886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kaikkonen MU, Lam MT, Glass CK. Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc Res. 2011;90(3):430–40. doi:10.1093/cvr/cvr097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Koturbash I, Zemp FJ, Pogribny I, Kovalchuk O. Small molecules with big effects: the role of the microRNAome in cancer and carcinogenesis. Mutat Res. 2011;722(2):94–105. doi:10.1016/j.mrgentox.2010.05.006.

    Article  CAS  PubMed  Google Scholar 

  48. Liu T, Tang H, Lang Y, Liu M, Li X. MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin. Cancer Lett. 2009;273(2):233–42. doi:10.1016/j.canlet.2008.08.003.

    Article  CAS  PubMed  Google Scholar 

  49. Liu R, Zhang C, Hu Z, Li G, Wang C, Yang C, et al. A five-microRNA signature identified from genome-wide serum microRNA expression profiling serves as a fingerprint for gastric cancer diagnosis. Eur J Cancer. 2011;47(5):784–91. doi:10.1016/j.ejca.2010.10.025.

    Article  CAS  PubMed  Google Scholar 

  50. Huang D, Wang H, Liu R, Li H, Ge S, Bai M, et al. miRNA27a is a biomarker for predicting chemosensitivity and prognosis in metastatic or recurrent gastric cancer. J Cell Biochem. 2014;115(3):549–56. doi:10.1002/jcb.24689.

    Article  CAS  PubMed  Google Scholar 

  51. Cui L, Zhang X, Ye G, Zheng T, Song H, Deng H, et al. Gastric juice MicroRNAs as potential biomarkers for the screening of gastric cancer. Cancer. 2013;119(9):1618–26. doi:10.1002/cncr.27903.

    Article  CAS  PubMed  Google Scholar 

  52. Wang Z, Liu M, Zhu H, Zhang W, He S, Hu C, et al. miR-106a is frequently upregulated in gastric cancer and inhibits the extrinsic apoptotic pathway by targeting FAS. Mol Carcinog. 2013;52(8):634–46. doi:10.1002/mc.21899.

    Article  CAS  PubMed  Google Scholar 

  53. Yang Q, Jie Z, Cao H, Greenlee AR, Yang C, Zou F, et al. Low-level expression of let-7a in gastric cancer and its involvement in tumorigenesis by targeting RAB40C. Carcinogenesis. 2011;32(5):713–22. doi:10.1093/carcin/bgr035.

    Article  CAS  PubMed  Google Scholar 

  54. Tsujiura M, Ichikawa D, Komatsu S, Shiozaki A, Takeshita H, Kosuga T, et al. Circulating microRNAs in plasma of patients with gastric cancers. Br J Cancer. 2010;102(7):1174–9. doi:10.1038/sj.bjc.6605608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li BS, Zhao YL, Guo G, Li W, Zhu ED, Luo X, et al. Plasma microRNAs, miR-223, miR-21 and miR-218, as novel potential biomarkers for gastric cancer detection. PLoS One. 2012;7(7):e41629. doi:10.1371/journal.pone.0041629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li C, Li JF, Cai Q, Qiu QQ, Yan M, Liu BY, et al. MiRNA-199a-3p: a potential circulating diagnostic biomarker for early gastric cancer. J Surg Oncol. 2013;108(2):89–92. doi:10.1002/jso.23358.

    Article  CAS  PubMed  Google Scholar 

  57. Zhu C, Ren C, Han J, Ding Y, Du J, Dai N, et al. A five-microRNA panel in plasma was identified as potential biomarker for early detection of gastric cancer. Br J Cancer. 2014;110(9):2291–9. doi:10.1038/bjc.2014.119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Huarte M. The emerging role of lncRNAs in cancer. Nat Med. 2015;21(11):1253–61. doi:10.1038/nm.3981.

    Article  CAS  PubMed  Google Scholar 

  59. Zhou X, Yin C, Dang Y, Ye F, Zhang G. Identification of the long non-coding RNA H19 in plasma as a novel biomarker for diagnosis of gastric cancer. Sci Rep. 2015;5:11516. doi:10.1038/srep11516.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Dong L, Qi P, MD X, Ni SJ, Huang D, QH X, et al. Circulating CUDR, LSINCT-5 and PTENP1 long noncoding RNAs in sera distinguish patients with gastric cancer from healthy controls. Int J Cancer J Int du Cancer. 2015. doi:10.1002/ijc.29484.

    Google Scholar 

  61. Shao Y, Ye M, Jiang X, Sun W, Ding X, Liu Z, et al. Gastric juice long noncoding RNA used as a tumor marker for screening gastric cancer. Cancer. 2014;120(21):3320–8. doi:10.1002/cncr.28882.

    Article  CAS  PubMed  Google Scholar 

  62. Damas J, Samuels DC, Carneiro J, Amorim A, Pereira F. Mitochondrial DNA rearrangements in health and disease--a comprehensive study. Hum Mutat. 2014;35(1):1–14. doi:10.1002/humu.22452.

    Article  CAS  PubMed  Google Scholar 

  63. Shen J, Platek M, Mahasneh A, Ambrosone CB, Zhao H. Mitochondrial copy number and risk of breast cancer: a pilot study. Mitochondrion. 2010;10(1):62–8. doi:10.1016/j.mito.2009.09.004.

    Article  CAS  PubMed  Google Scholar 

  64. Fernandes J, Michel V, Camorlinga-Ponce M, Gomez A, Maldonado C, De Reuse H, et al. Circulating mitochondrial DNA level, a noninvasive biomarker for the early detection of gastric cancer. Cancer Epidemiol, Biomark Prev: Publ Am Assoc Cancer Res, Cosponsored Am Soc Prev Oncol. 2014;23(11):2430–8. doi:10.1158/1055-9965.EPI-14-0471.

    Article  CAS  Google Scholar 

  65. Liao LM, Baccarelli A, Shu XO, Gao YT, Ji BT, Yang G, et al. Mitochondrial DNA copy number and risk of gastric cancer: a report from the shanghai Women’s health study. Cancer Epidemiol, Biomark Prev: Publ Am Assoc Cancer Res, Cosponsored Am Soc Prev Oncol. 2011;20(9):1944–9. doi:10.1158/1055-9965.EPI-11-0379.

    Article  CAS  Google Scholar 

  66. Schwarzenbach H, Nishida N, Calin GA, Pantel K. Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol. 2014;11(3):145–56. doi:10.1038/nrclinonc.2014.5.

    Article  CAS  PubMed  Google Scholar 

  67. Swaminathan R, Butt AN. Circulating nucleic acids in plasma and serum: recent developments. Ann N Y Acad Sci. 2006;1075:1–9. doi:10.1196/annals.1368.001.

    Article  CAS  PubMed  Google Scholar 

  68. Gold B, Cankovic M, Furtado LV, Meier F, Gocke CD. Do circulating tumor cells, exosomes, and circulating tumor nucleic acids have clinical utility? A report of the association for molecular pathology. J Mol Diagn: JMD. 2015;17(3):209–24. doi:10.1016/j.jmoldx.2015.02.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Huang JL, Zheng L, Hu YW, Wang Q. Characteristics of long non-coding RNA and its relation to hepatocellular carcinoma. Carcinogenesis. 2014;35(3):507–14. doi:10.1093/carcin/bgt405.

    Article  CAS  PubMed  Google Scholar 

  70. Git A, Dvinge H, Salmon-Divon M, Osborne M, Kutter C, Hadfield J, et al. Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA. 2010;16(5):991–1006. doi:10.1261/rna.1947110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. He Y, Lin J, Kong D, Huang M, Xu C, Kim TK, et al. Current state of circulating MicroRNAs as cancer biomarkers. Clin Chem. 2015;61(9):1138–55. doi:10.1373/clinchem.2015.241190.

    Article  CAS  PubMed  Google Scholar 

  72. Liu W, Peng B, Lu Y, Xu W, Qian W, Zhang JY. Autoantibodies to tumor-associated antigens as biomarkers in cancer immunodiagnosis. Autoimmun Rev. 2011;10(6):331–5. doi:10.1016/j.autrev.2010.12.002.

    Article  CAS  PubMed  Google Scholar 

  73. Gnjatic S, Wheeler C, Ebner M, Ritter E, Murray A, Altorki NK, et al. Seromic analysis of antibody responses in non-small cell lung cancer patients and healthy donors using conformational protein arrays. J Immunol Methods. 2009;341(1–2):50–8. doi:10.1016/j.jim.2008.10.016.

    Article  CAS  PubMed  Google Scholar 

  74. Zaenker P, Ziman MR. Serologic autoantibodies as diagnostic cancer biomarkers--a review. Cancer Epidemiol, Biomark Prev: Publ Am Assoc Cancer Res, Cosponsored Am Soc Prev Oncol. 2013;22(12):2161–81. doi:10.1158/1055-9965.EPI-13-0621.

    Article  CAS  Google Scholar 

  75. Tan HT, Low J, Lim SG, Chung MC. Serum autoantibodies as biomarkers for early cancer detection. FEBS J. 2009;276(23):6880–904. doi:10.1111/j.1742-4658.2009.07396.x.

    Article  CAS  PubMed  Google Scholar 

  76. Fujiwara S, Wada H, Kawada J, Kawabata R, Takahashi T, Fujita J, et al. NY-ESO-1 antibody as a novel tumour marker of gastric cancer. Br J Cancer. 2013;108(5):1119–25. doi:10.1038/bjc.2013.51.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Tsunemi S, Nakanishi T, Fujita Y, Bouras G, Miyamoto Y, Miyamoto A, et al. Proteomics-based identification of a tumor-associated antigen and its corresponding autoantibody in gastric cancer. Oncol Rep. 2010;23(4):949–56.

    CAS  PubMed  Google Scholar 

  78. Zhou SL, Ku JW, Fan ZM, Yue WB, Du F, Zhou YF, et al. Detection of autoantibodies to a panel of tumor-associated antigens for the diagnosis values of gastric cardia adenocarcinoma. Dis Esophagus: Off J Int Soc Dis Esophagus / ISDE. 2015;28(4):371–9. doi:10.1111/dote.12206.

    Article  CAS  Google Scholar 

  79. Zayakin P, Ancans G, Silina K, Meistere I, Kalnina Z, Andrejeva D, et al. Tumor-associated autoantibody signature for the early detection of gastric cancer. Int J Cancer J Int du Cancer. 2013;132(1):137–47. doi:10.1002/ijc.27667.

    Article  CAS  Google Scholar 

  80. Saad F, Pantel K. The current role of circulating tumor cells in the diagnosis and management of bone metastases in advanced prostate cancer. Future Oncol. 2012;8(3):321–31. doi:10.2217/fon.12.3.

    Article  CAS  PubMed  Google Scholar 

  81. Zhang ZY, Ge HY. Micrometastasis in gastric cancer. Cancer Lett. 2013;336(1):34–45. doi:10.1016/j.canlet.2013.04.021.

    Article  CAS  PubMed  Google Scholar 

  82. Alix-Panabieres C, Pantel K. Circulating tumor cells: liquid biopsy of cancer. Clin Chem. 2013;59(1):110–8. doi:10.1373/clinchem.2012.194258.

    Article  CAS  PubMed  Google Scholar 

  83. Hiraiwa K, Takeuchi H, Hasegawa H, Saikawa Y, Suda K, Ando T, et al. Clinical significance of circulating tumor cells in blood from patients with gastrointestinal cancers. Ann Surg Oncol. 2008;15(11):3092–100. doi:10.1245/s10434-008-0122-9.

    Article  PubMed  Google Scholar 

  84. Tinhofer I, Konschak R, Stromberger C, Raguse JD, Dreyer JH, Johrens K, et al. Detection of circulating tumor cells for prediction of recurrence after adjuvant chemoradiation in locally advanced squamous cell carcinoma of the head and neck. Ann Oncol: Off J Eur Soc Med Oncol / ESMO. 2014;25(10):2042–7. doi:10.1093/annonc/mdu271.

    Article  CAS  Google Scholar 

  85. Katoh S, Goi T, Naruse T, Ueda Y, Kurebayashi H, Nakazawa T, et al. Cancer stem cell marker in circulating tumor cells: expression of CD44 variant exon 9 is strongly correlated to treatment refractoriness, recurrence and prognosis of human colorectal cancer. Anticancer Res. 2015;35(1):239–44.

    CAS  PubMed  Google Scholar 

  86. Tang L, Zhao S, Liu W, Parchim NF, Huang J, Tang Y, et al. Diagnostic accuracy of circulating tumor cells detection in gastric cancer: systematic review and meta-analysis. BMC Cancer. 2013;13:314. doi:10.1186/1471-2407-13-314.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Uenosono Y, Arigami T, Kozono T, Yanagita S, Hagihara T, Haraguchi N, et al. Clinical significance of circulating tumor cells in peripheral blood from patients with gastric cancer. Cancer. 2013;119(22):3984–91. doi:10.1002/cncr.28309.

    Article  PubMed  Google Scholar 

  88. Wang S, Zheng G, Cheng B, Chen F, Wang Z, Chen Y, et al. Circulating tumor cells (CTCs) detected by RT-PCR and its prognostic role in gastric cancer: a meta-analysis of published literature. PLoS One. 2014;9(6):e99259. doi:10.1371/journal.pone.0099259.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Huang X, Gao P, Sun J, Chen X, Song Y, Zhao J, et al. Clinicopathological and prognostic significance of circulating tumor cells in patients with gastric cancer: a meta-analysis. Int J Cancer J Int du Cancer. 2015;136(1):21–33. doi:10.1002/ijc.28954.

    Article  CAS  Google Scholar 

  90. Zhang Z, Ramnath N, Nagrath S. Current status of CTCs as liquid biopsy in lung cancer and future directions. Front Oncol. 2015;5:209. doi:10.3389/fonc.2015.00209.

    PubMed  PubMed Central  Google Scholar 

  91. Corradi M, Poli D, Banda I, Bonini S, Mozzoni P, Pinelli S, et al. Exhaled breath analysis in suspected cases of non-small-cell lung cancer: a cross-sectional study. J Breath Res. 2015;9(2):027101. doi:10.1088/1752-7155/9/2/027101.

    Article  CAS  PubMed  Google Scholar 

  92. Peled N, Hakim M, Bunn Jr PA, Miller YE, Kennedy TC, Mattei J, et al. Non-invasive breath analysis of pulmonary nodules. J Thorac Oncol: Off Publ Int Assoc Study Lung Cancer. 2012;7(10):1528–33. doi:10.1097/JTO.0b013e3182637d5f.

    Article  Google Scholar 

  93. Li J, Peng Y, Duan Y. Diagnosis of breast cancer based on breath analysis: an emerging method. Crit Rev Oncol Hematol. 2013;87(1):28–40. doi:10.1016/j.critrevonc.2012.11.007.

    Article  PubMed  Google Scholar 

  94. Barash O, Zhang W, Halpern JM, Hua QL, Pan YY, Kayal H, et al. Differentiation between genetic mutations of breast cancer by breath volatolomics. Oncotarget. 2015;6(42):44864–76. doi:10.18632/oncotarget.6269.

    PubMed  PubMed Central  Google Scholar 

  95. Wang C, Ke C, Wang X, Chi C, Guo L, Luo S, et al. Noninvasive detection of colorectal cancer by analysis of exhaled breath. Anal Bioanal Chem. 2014;406(19):4757–63. doi:10.1007/s00216-014-7865-x.

    Article  CAS  PubMed  Google Scholar 

  96. Peng G, Hakim M, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A, et al. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br J Cancer. 2010;103(4):542–51. doi:10.1038/sj.bjc.6605810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. ZQ X, Broza YY, Ionsecu R, Tisch U, Ding L, Liu H, et al. A nanomaterial-based breath test for distinguishing gastric cancer from benign gastric conditions. Br J Cancer. 2013;108(4):941–50. doi:10.1038/bjc.2013.44.

    Article  CAS  Google Scholar 

  98. Amal H, Leja M, Funka K, Skapars R, Sivins A, Ancans G, et al. Detection of precancerous gastric lesions and gastric cancer through exhaled breath. Gut. 2016;65(3):400–7. doi:10.1136/gutjnl-2014-308536.

    Article  PubMed  Google Scholar 

  99. Amal H, Leja M, Broza YY, Tisch U, Funka K, Liepniece-Karele I, et al. Geographical variation in the exhaled volatile organic compounds. J Breath Res. 2013;7(4):047102. doi:10.1088/1752-7155/7/4/047102.

    Article  PubMed  CAS  Google Scholar 

  100. Konstantinidi EM, Lappas AS, Tzortzi AS, Behrakis PK. Exhaled breath condensate: technical and diagnostic aspects. Sci World J. 2015;2015:435160. doi:10.1155/2015/435160.

    Article  Google Scholar 

  101. Schmidt K, Podmore I. Current challenges in volatile organic compounds analysis as potential biomarkers of cancer. J Biomark. 2015;2015:981458. doi:10.1155/2015/981458.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Vo-Dinh T, Liu Y, Fales AM, Ngo H, Wang HN, Register JK, et al. SERS nanosensors and nanoreporters: golden opportunities in biomedical applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7(1):17–33. doi:10.1002/wnan.1283.

    Article  CAS  PubMed  Google Scholar 

  103. Lin J, Chen R, Feng S, Pan J, Li Y, Chen G, et al. A novel blood plasma analysis technique combining membrane electrophoresis with silver nanoparticle-based SERS spectroscopy for potential applications in noninvasive cancer detection. Nanomed: Nanotechnol, Biol Med. 2011;7(5):655–63. doi:10.1016/j.nano.2011.01.012.

    CAS  Google Scholar 

  104. Chen Y, Chen G, Zheng X, He C, Feng S, Chen Y, et al. Discrimination of gastric cancer from normal by serum RNA based on surface-enhanced Raman spectroscopy (SERS) and multivariate analysis. Med Phys. 2012;39(9):5664–8. doi:10.1118/1.4747269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ito H, Inoue H, Hasegawa K, Hasegawa Y, Shimizu T, Kimura S, et al. Use of surface-enhanced Raman scattering for detection of cancer-related serum-constituents in gastrointestinal cancer patients. Nanomed: Nanotechnol, Biol Med. 2014;10(3):599–608. doi:10.1016/j.nano.2013.09.006.

    CAS  Google Scholar 

  106. Bonifacio A, Dalla Marta S, Spizzo R, Cervo S, Steffan A, Colombatti A, et al. Surface-enhanced Raman spectroscopy of blood plasma and serum using Ag and Au nanoparticles: a systematic study. Anal Bioanal Chem. 2014;406(9–10):2355–65. doi:10.1007/s00216-014-7622-1.

    Article  CAS  PubMed  Google Scholar 

  107. Wang C, Yu C. Analytical characterization using surface-enhanced Raman scattering (SERS) and microfluidic sampling. Nanotechnology. 2015;26(9):092001. doi:10.1088/0957-4484/26/9/092001.

    Article  CAS  PubMed  Google Scholar 

  108. Zhou LY, Lin SR, Li Y, Geng QM, Ding SG, Meng LM, et al. The intrinsic fluorescence spectrum of dilute gastric juice as a novel diagnostic tool for gastric cancer. J Dig Dis. 2011;12(4):279–85. doi:10.1111/j.1751-2980.2011.00507.x.

    Article  PubMed  Google Scholar 

  109. Deng K, Zhou LY, Lin SR, Li Y, Chen M, Geng QM, et al. A novel approach for the detection of early gastric cancer: fluorescence spectroscopy of gastric juice. J Dig Dis. 2013;14(6):299–304. doi:10.1111/1751-2980.12040.

    Article  CAS  PubMed  Google Scholar 

  110. Genta RM. Screening for gastric cancer: does it make sense? Alimentary pharmacology &therapeutics. 2004;20(Suppl 2):42–7. doi:10.1111/j.1365-2036.2004.02039.x.

  111. Abdollahi A, Folkman J. Evading tumor evasion: current concepts and perspectives of anti-angiogenic cancer therapy. Drug Resist Updat: Rev Commentaries Antimicrob Anticancer Chemother. 2010;13(1–2):16–28. doi:10.1016/j.drup.2009.12.001.

    Article  CAS  Google Scholar 

  112. Leung K. 64Cu-1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid-cyclo(CGNSNPKSC). Molecular Imaging and Contrast Agent Database (MICAD). Bethesda (MD). 2004.

  113. Hui X, Han Y, Liang S, Liu Z, Liu J, Hong L, et al. Specific targeting of the vasculature of gastric cancer by a new tumor-homing peptide CGNSNPKSC. J Control Release: Off J Control Release Soc. 2008;131(2):86–93. doi:10.1016/j.jconrel.2008.07.024.

    Article  CAS  Google Scholar 

  114. Xin J, Zhang X, Liang J, Xia L, Yin J, Nie Y, et al. In vivo gastric cancer targeting and imaging using novel symmetric cyanine dye-conjugated GX1 peptide probes. Bioconjug Chem. 2013;24(7):1134–43. doi:10.1021/bc3006539.

    Article  CAS  PubMed  Google Scholar 

  115. Mort JS, Buttle DJ. Cathepsin B. Int J Biochem Cell Biol. 1997;29(5):715–20.

    Article  CAS  PubMed  Google Scholar 

  116. Ebert MP, Kruger S, Fogeron ML, Lamer S, Chen J, Pross M, et al. Overexpression of cathepsin B in gastric cancer identified by proteome analysis. Proteomics. 2005;5(6):1693–704. doi:10.1002/pmic.200401030.

    Article  CAS  PubMed  Google Scholar 

  117. Nomura T, Katunuma N. Involvement of cathepsins in the invasion, metastasis and proliferation of cancer cells. J Med Investig: JMI. 2005;52(1–2):1–9.

    Article  Google Scholar 

  118. Dohchin A, Suzuki JI, Seki H, Masutani M, Shiroto H, Kawakami Y. Immunostained cathepsins B and L correlate with depth of invasion and different metastatic pathways in early stage gastric carcinoma. Cancer. 2000;89(3):482–7.

    Article  CAS  PubMed  Google Scholar 

  119. Herszenyi L, Istvan G, Cardin R, De Paoli M, Plebani M, Tulassay Z, et al. Serum cathepsin B and plasma urokinase-type plasminogen activator levels in gastrointestinal tract cancers. Eur J Cancer Prev: Off J Eur Cancer Prev Organ. 2008;17(5):438–45. doi:10.1097/CEJ.0b013e328305a130.

    Article  Google Scholar 

  120. Hirano T, Manabe T, Takeuchi S. Serum cathepsin B levels and urinary excretion of cathepsin B in the cancer patients with remote metastasis. Cancer Lett. 1993;70(1–2):41–4.

    Article  CAS  PubMed  Google Scholar 

  121. Ding S, Eric Blue R, Chen Y, Scull B, Kay Lund P, Morgan D. Molecular imaging of gastric neoplasia with near-infrared fluorescent activatable probes. Mol Imaging. 2012;11(6):507–15.

    PubMed  PubMed Central  Google Scholar 

  122. Petersen H, Holdgaard PC, Madsen PH, Knudsen LM, Gad D, Gravergaard AE, et al. FDG PET/CT in cancer: comparison of actual use with literature-based recommendations. Eur J Nucl Med Mol Imaging. 2016;43(4):695–706. doi:10.1007/s00259-015-3217-0.

    Article  PubMed  Google Scholar 

  123. Yun M. Imaging of gastric cancer metabolism using 18 F-FDG PET/CT. J Gastric Cancer. 2014;14(1):1–6. doi:10.5230/jgc.2014.14.1.1.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Dassen AE, Lips DJ, Hoekstra CJ, Pruijt JF, Bosscha K. FDG-PET has no definite role in preoperative imaging in gastric cancer. Eur J Surg Oncol: J Eur Soc Surg Oncol Br Assoc Surg Oncol. 2009;35(5):449–55. doi:10.1016/j.ejso.2008.11.010.

    Article  CAS  Google Scholar 

  125. Wu CX, Zhu ZH. Diagnosis and evaluation of gastric cancer by positron emission tomography. World J Gastroenterol: WJG. 2014;20(16):4574–85. doi:10.3748/wjg.v20.i16.4574.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Hopkins S, Yang GY. FDG PET imaging in the staging and management of gastric cancer. J Gastrointest Oncol. 2011;2(1):39–44. doi:10.3978/j.issn.2078-6891.2010.004.

    PubMed  PubMed Central  Google Scholar 

  127. Wilson KE, Wang TY, Willmann JK. Acoustic and photoacoustic molecular imaging of cancer. J Nucl Med: Off Publ, Soc Nucl Med. 2013;54(11):1851–4. doi:10.2967/jnumed.112.115568.

    Article  Google Scholar 

  128. Xu B, Li X, Yin J, Liang C, Liu L, Qiu Z, et al. Evaluation of 68Ga-labeled MG7 antibody: a targeted probe for PET/CT imaging of gastric cancer. Sci Rep. 2015;5:8626. doi:10.1038/srep08626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Guo DL, Dong M, Wang L, Sun LP, Yuan Y. Expression of gastric cancer-associated MG7 antigen in gastric cancer, precancerous lesions and H. Pylori -associated gastric diseases. World J Gastroenterol: WJG. 2002;8(6):1009–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Cheng CC, Huang CF, Ho AS, Peng CL, Chang CC, Mai FD, et al. Novel targeted nuclear imaging agent for gastric cancer diagnosis: glucose-regulated protein 78 binding peptide-guided 111In-labeled polymeric micelles. Int J Nanomedicine. 2013;8:1385–91. doi:10.2147/IJN.S42003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Zhu H, Zhao C, Liu F, Wang L, Feng J, Zhou Z, et al. Radiolabeling and evaluation of (64)Cu-DOTA-F56 peptide targeting vascular endothelial growth factor receptor 1 in the molecular imaging of gastric cancer. Am J Cancer Res. 2015;5(11):3301–10.

    PubMed  PubMed Central  Google Scholar 

  132. Ray S, Reddy PJ, Jain R, Gollapalli K, Moiyadi A, Srivastava S. Proteomic technologies for the identification of disease biomarkers in serum: advances and challenges ahead. Proteomics. 2011;11(11):2139–61. doi:10.1002/pmic.201000460.

    Article  CAS  PubMed  Google Scholar 

  133. Huijbers A, Velstra B, Dekker TJ, Mesker WE, van der Burgt YE, Mertens BJ, et al. Proteomic serum biomarkers and their potential application in cancer screening programs. Int J Mol Sci. 2010;11(11):4175–93. doi:10.3390/ijms11114175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 81560479) and Science and Technology Project of the Education Department of Jiangxi Province (No. KJLD13014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun-He Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, QS., Zhang, KH. Noninvasive detection of gastric cancer. Tumor Biol. 37, 11633–11643 (2016). https://doi.org/10.1007/s13277-016-5129-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5129-4

Keywords

Navigation