Skip to main content

Advertisement

Log in

The role of microRNA-26a in human cancer progression and clinical application

  • Review
  • Published:
Tumor Biology

Abstract

MicroRNAs, a class of endogenous, small (18–25 nucleotides) noncoding RNAs, regulate gene expression by directly binding to the 3′-untranslated regions of target messenger RNAs. Evidence has shown that alteration of microRNAs is involved in cancer initial and progression. MicroRNA-26a is commonly dysregulated in diverse cancers and is involved in various biological processes, including proliferation, migration, invasion, angiogenesis, and metabolism by targeting multiple mRNAs. This review summarizes current research on the physiology and pathological functions of miR-26a and its applications for clinical therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97. doi:10.1016/s0092-8674(04)00045-5.

    Article  CAS  PubMed  Google Scholar 

  2. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20. doi:10.1016/j.cell.2004.12.035.

    Article  CAS  PubMed  Google Scholar 

  3. Hwang HW, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer. 2006;94(6):776–80. doi:10.1038/sj.bjc.6603023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6(11):857–66. doi:10.1038/nrc1997.

    Article  CAS  PubMed  Google Scholar 

  5. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 2004;64(11):3753–6. doi:10.1158/0008-5472.can-04-0637.

    Article  CAS  PubMed  Google Scholar 

  6. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, et al. RAS is regulated by the let-7 MicroRNA family. Cell. 2005;120(5):635–47. doi:10.1016/j.cell.2005.01.014.

    Article  CAS  PubMed  Google Scholar 

  7. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133(2):647–58. doi:10.1053/j.gastro.2007.05.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shimizu S, Takehara T, Hikita H, Kodama T, Miyagi T, Hosui A, et al. The let-7 family of microRNAs inhibits Bcl-xL expression and potentiates sorafenib-induced apoptosis in human hepatocellular carcinoma. J Hepatol. 2010;52(5):698–704.

    Article  CAS  PubMed  Google Scholar 

  9. Wang B, Majumder S, Nuovo G, Kutay H, Volinia S, Patel T, et al. Role of MicroRNA-155 at early stages of hepatocarcinogenesis induced by choline-deficient and amino acid-defined diet in C57BL/6 mice. Hepatology. 2009;50(4):1152–61. doi:10.1002/hep.23100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen S, Zheng JM, Hao QA, Yang SS, Wang JQ, Chen HA, et al. p53-insensitive PUMA down-regulation is essential in the early phase of liver regeneration after partial hepatectomy in mice. J Hepatol. 2010;52(6):864–71.

    Article  CAS  PubMed  Google Scholar 

  11. Lee Y, Kim M, Han JJ, Yeom KH, Lee S, Baek SH, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO Journal. 2004;23(20):4051–60. doi:10.1038/sj.emboj.7600385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cai XZ, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA-Publ RNA Soc. 2004;10(12):1957–66. doi:10.1261/rna.7135204.

    Article  CAS  Google Scholar 

  13. Denli AM, Tops BBJ, Plasterk RHA, Ketting RF, Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature. 2004;432(7014):231–5. doi:10.1038/nature03049.

    Article  CAS  PubMed  Google Scholar 

  14. Han JJ, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004;18(24):3016–27. doi:10.1101/gad.1262504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409(6818):363–6. doi:10.1038/35053110.

    Article  CAS  PubMed  Google Scholar 

  16. Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C-elegans developmental timing. Cell. 2001;106(1):23–34. doi:10.1016/s0092-8674(01)00431-7.

    Article  CAS  PubMed  Google Scholar 

  17. Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science. 2001;293(5531):834–8. doi:10.1126/science.1062961.

    Article  CAS  PubMed  Google Scholar 

  18. Ketting RF, Fischer SEJ, Bernstein E, Sijen T, Hannon GJ, Plasterk RHA. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C-elegans. Genes Dev. 2001;15(20):2654–9. doi:10.1101/gad.927801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Haase AD, Jaskiewicz L, Zhang HD, Laine S, Sack R, Gatignol A, et al. TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep. 2005;6(10):961–7. doi:10.1038/sj.embor.7400509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, et al. TRBP recruits the dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 2005;436(7051):740–4. doi:10.1038/nature03868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim VN, Nam JW. Genomics of microRNA. Trends Genet. 2006;22(3):165–73. doi:10.1016/j.tig.2006.01.003.

    Article  CAS  PubMed  Google Scholar 

  22. Cheloufi S, Dos Santos CO, Chong MMW, Hannon GJ. A Dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature. 2010;465(7298):584–9. doi:10.1038/nature09092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33. doi:10.1016/j.cell.2009.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhu Y, Lu Y, Zhang Q, Liu J-J, Li T-J, Yang J-R, et al. MicroRNA-26a/b and their host genes cooperate to inhibit the G1/S transition by activating the pRb protein. Nucleic Acids Res. 2012;40(10):4615–25. doi:10.1093/nar/gkr1278.

    Article  CAS  PubMed  Google Scholar 

  25. Yang X, Liang L, Zhang X-F, Jia H-L, Qin Y, Zhu X-C, et al. MicroRNA-26a suppresses tumor growth and metastasis of human hepatocellular carcinoma by targeting interleukin-6-Stat3 pathway. Hepatology. 2013;58(1):158–70. doi:10.1002/hep.26305.

    Article  CAS  PubMed  Google Scholar 

  26. Fu X, Meng Z, Liang W, Tian Y, Wang X, Han W, et al. miR-26a enhances miRNA biogenesis by targeting Lin28B and Zcchc11 to suppress tumor growth and metastasis. Oncogene. 2014;33(34):4296–306. doi:10.1038/onc.2013.385.

    Article  CAS  PubMed  Google Scholar 

  27. Chen L, Zheng J, Zhang Y, Yang L, Wang J, Ni J, et al. Tumor-specific expression of MicroRNA-26a suppresses human hepatocellular carcinoma growth via cyclin-dependent and -independent pathways. Mol Ther. 2011;19(8):1521–8. doi:10.1038/mt.2011.64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Greene CM, Varley RB, Lawless MW. MicroRNAs and liver cancer associated with iron overload: therapeutic targets unravelled. World J Gastroenterol. 2013;19(32):5212–26. doi:10.3748/wjg.v19.i32.5212.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Liu B, Wu X, Liu B, Wang C, Liu Y, Zhou Q, et al. MiR-26a enhances metastasis potential of lung cancer cells via AKT pathway by targeting PTEN. Biochim Biophys Acta-Mol Basis Dis. 2012;1822(11):1692–704. doi:10.1016/j.bbadis.2012.07.019.

    Article  CAS  Google Scholar 

  30. Dang X, Ma A, Yang L, Hu H, Zhu B, Shang D, et al. MicroRNA-26a regulates tumorigenic properties of EZH2 in human lung carcinoma cells. Cancer Genet. 2012;205(3):113–23. doi:10.1016/j.cancergen.2012.01.002.

    Article  CAS  PubMed  Google Scholar 

  31. Yang Y, Li H, Hou S, Hu B, Liu J, Wang J. The noncoding RNA expression profile and the effect of lncRNA AK126698 on cisplatin resistance in non-small-cell lung cancer cell. PLoS One. 2013;8(5):e65309. doi:10.1371/journal.pone.0065309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gao W, Shen H, Liu L, Xu J, Xu J, Shu Y. MiR-21 overexpression in human primary squamous cell lung carcinoma is associated with poor patient prognosis. J Cancer Res Clin Oncol. 2011;137(4):557–66. doi:10.1007/s00432-010-0918-4.

    Article  CAS  PubMed  Google Scholar 

  33. Deng J, He M, Chen L, Chen C, Zheng J, Cai Z. The Loss of miR-26a-mediated post-transcriptional regulation of Cyclin E2 in pancreatic cancer cell proliferation and decreased patient survival. Plos One. 2013;8(10):e76450. doi:10.1371/journal.pone.0076450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bao B, Ali S, Banerjee S, Wang Z, Logna F, Azmi AS, et al. Curcumin analogue CDF inhibits pancreatic tumor growth by switching on suppressor microRNAs and attenuating EZH2 expression. Cancer Res. 2012;72(1):335–45. doi:10.1158/0008-5472.can-11-2182.

    Article  CAS  PubMed  Google Scholar 

  35. Bao B, Wang Z, Ali S, Ahmad A, Azmi AS, Sarkar SH, et al. Metformin inhibits cell proliferation, migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells. Cancer Prev Res. 2012;5(3):355–64. doi:10.1158/1940-6207.capr-11-0299.

    Article  CAS  Google Scholar 

  36. Ciarapica R, Russo G, Verginelli F, Raimondi L, Donfrancesco A, Rota R, et al. Deregulated expression of miR-26a and Ezh2 in rhabdomyosarcoma. Cell Cycle. 2009;8(1):172–5. doi:10.4161/cc.8.1.7292.

    Article  CAS  PubMed  Google Scholar 

  37. Salvatori B, Iosue I, Mangiavacchi A, Loddo G, Padula F, Chiaretti S, et al. The microRNA-26a target E2F7 sustains cell proliferation and inhibits monocytic differentiation of acute myeloid leukemia cells. Cell Death Dis. 2012;3:e413. doi:10.1038/cddis.2012.151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gentilin E, Tagliati F, Filieri C, Mole D, Minoia M, Ambrosio MR, et al. miR-26a plays an important role in cell cycle regulation in ACTH-secreting pituitary adenomas by modulating protein kinase C delta. Endocrinology. 2013;154(5):1690–700. doi:10.1210/en.2012-2070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lv M, Zhang X, Li M, Chen Q, Ye M, Liang W, et al. miR-26a and its target CKS2 modulate cell growth and tumorigenesis of papillary thyroid carcinoma. PLoS One. 2013;8(7):e67591. doi:10.1371/journal.pone.0067591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhou H, Guo W, Zhao Y, Wang Y, Zha R, Ding J, et al. MicroRNA-26a acts as a tumor suppressor inhibiting gallbladder cancer cell proliferation by directly targeting HMGA2. Int J Oncol. 2014;44(6):2050–8. doi:10.3892/ijo.2014.2360.

    CAS  PubMed  Google Scholar 

  41. Deng M, Tang H-l, Lu X-H, Liu M-Y, Lu X-M, Gu Y-X, et al. miR-26a suppresses tumor growth and metastasis by targeting FGF9 in gastric cancer. Plos One. 2013;8(8):e72662. doi:10.1371/journal.pone.0072662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang G, Zhang H, He H, Tong W, Wang B, Liao G, et al. Up-regulation of microRNA in bladder tumor tissue is not common. Int Urol Nephrol. 2010;42(1):95–102. doi:10.1007/s11255-009-9584-3.

    Article  PubMed  CAS  Google Scholar 

  43. Zhang B, Liu X-X, He J-R, Zhou C-X, Guo M, He M, et al. Pathologically decreased miR-26a antagonizes apoptosis and facilitates carcinogenesis by targeting MTDH and EZH2 in breast cancer. Carcinogenesis. 2011;32(1):2–9. doi:10.1093/carcin/bgq209.

    Article  CAS  PubMed  Google Scholar 

  44. Gao J, Li L, Wu M, Liu M, Xie X, Guo J, et al. MiR-26a inhibits proliferation and migration of breast cancer through repression of MCL-1. PLoS One. 2013;8(6):e65138. doi:10.1371/journal.pone.0065138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sandhu R, Rivenbark AG, Mackler RM, Livasy CA, Coleman WB. Dysregulation of microRNA expression drives aberrant DNA hypermethylation in basal-like breast cancer. Int J Oncol. 2014;44(2):563–72. doi:10.3892/ijo.2013.2197.

    CAS  PubMed  Google Scholar 

  46. Guo P, Lan J, Ge J, Nie Q, Guo L, Qiu Y, et al. MiR-26a enhances the radiosensitivity of glioblastoma multiforme cells through targeting of ataxia-telangiectasia mutated. Exp Cell Res. 2014;320(2):200–8. doi:10.1016/j.yexcr.2013.10.020.

    Article  CAS  PubMed  Google Scholar 

  47. Jia L-F, Wei S-B, Gan Y-H, Guo Y, Gong K, Mitchelson K, et al. Expression, regulation and roles of miR-26a and MEG3 in tongue squamous cell carcinoma. Int J Cancer. 2014;135(10):2282–93. doi:10.1002/ijc.28667.

    Article  CAS  PubMed  Google Scholar 

  48. Boerno ST, Fischer A, Kerick M, Faelth M, Laible M, Brase JC, et al. Genome-wide DNA methylation events in TMPRSS2-ERG fusion-negative prostate cancers implicate an EZH2-dependent mechanism with miR-26a hypermethylation. Cancer Discov. 2012;2(11):1024–35. doi:10.1158/2159-8290.cd-12-0041.

    Article  CAS  Google Scholar 

  49. Zhao S, Ye X, Xiao L, Lian X, Feng Y, Li F, et al. MiR-26a inhibits prostate cancer progression by repression of Wnt5a. Tumor Biol. 2014;35(10):9725–33. doi:10.1007/s13277-014-2206-4.

    Article  CAS  Google Scholar 

  50. Reuland SN, Smith SM, Bemis LT, Goldstein NB, Almeida AR, Partyka KA, et al. MicroRNA-26a is strongly downregulated in melanoma and induces cell death through repression of silencer of death domains (SODD). J Investig Dermatol. 2013;133(5):1286–93. doi:10.1038/jid.2012.400.

    Article  CAS  PubMed  Google Scholar 

  51. Ryu B, Hwang S, Alani RM. MicroRNAs as an emerging target for melanoma therapy. J Investig Dermatol. 2013;133(5):1137–9. doi:10.1038/jid.2012.505.

    Article  CAS  PubMed  Google Scholar 

  52. Chen HC, Chen GH, Chen YH, Liao WL, Liu CY, Chang KP, et al. MicroRNA deregulation and pathway alterations in nasopharyngeal carcinoma. Br J Cancer. 2009;100(6):1002–11. doi:10.1038/sj.bjc.6604948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lu J, He M-L, Wang L, Chen Y, Liu X, Dong Q, et al. MiR-26a inhibits cell growth and tumorigenesis of nasopharyngeal carcinoma through repression of EZH2. Cancer Res. 2011;71(1):225–33. doi:10.1158/0008-5472.can-10-1850.

    Article  CAS  PubMed  Google Scholar 

  54. Dong J, Sui L, Wang Q, Chen M, Sun H. MicroRNA-26a inhibits cell proliferation and invasion of cervical cancer cells by targeting protein tyrosine phosphatase type IVA 1. Mol Med Rep. 2014;10(3):1426–32. doi:10.3892/mmr.2014.2335.

    CAS  PubMed  Google Scholar 

  55. Song Q-C, Shi Z-B, Zhang Y-T, Ji L, Wang K-Z, Duan D-P, et al. Downregulation of microRNA-26a is associated with metastatic potential and the poor prognosis of osteosarcoma patients. Oncol Rep. 2014;31(3):1263–70. doi:10.3892/or.2014.2989.

    CAS  PubMed  Google Scholar 

  56. Sander S, Bullinger L, Wirth T. Repressing the repressor a new mode of MYC action in lymphomagenesis. Cell Cycle. 2009;8(4):556–9.

    Article  CAS  PubMed  Google Scholar 

  57. Li X, Lian L, Zhang D, Qu L, Yang N. gga-miR-26a targets NEK6 and suppresses Marek’s disease lymphoma cell proliferation. Poult Sci. 2014;93(5):1097–105. doi:10.3382/ps.2013-03656.

    Article  CAS  PubMed  Google Scholar 

  58. Mavrakis KJ, Van der Meulen J, Wolfe AL, Liu X, Mets E, Taghon T, et al. A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL). Nat Genet. 2011;43(7):673–8. doi:10.1038/ng.858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huse JT, Brennan C, Hambardzumyan D, Wee B, Pena J, Rouhanifard SH, et al. The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev. 2009;23(11):1327–37. doi:10.1101/gad.1777409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Qian X, Zhao P, Li W, Shi Z-M, Wang L, Xu Q, et al. MicroRNA-26a promotes tumor growth and angiogenesis in glioma by directly targeting prohibitin. CNS Neurosci Ther. 2013;19(10):804–12. doi:10.1111/cns.12149.

    CAS  PubMed  Google Scholar 

  61. Shen W, Song M, Liu J, Qiu G, Li T, Hu Y, et al. MiR-26a promotes ovarian cancer proliferation and tumorigenesis. Plos One. 2014;9(1):e86871. doi:10.1371/journal.pone.0086871.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Chung Y-W, Bae H-S, Song J-Y, Lee JK, Lee NW, Kim T, et al. Detection of MicroRNA as novel biomarkers of epithelial ovarian cancer from the serum of ovarian cancer patient. Int J Gynecol Cancer. 2013;23(4):673–9. doi:10.1097/IGC.0b013e31828c166d.

    Article  PubMed  Google Scholar 

  63. Zhang J, Han C, Wu T. MicroRNA-26a promotes cholangiocarcinoma growth by activating beta-catenin. Gastroenterology. 2012;143(1):246–56. doi:10.1053/j.gastro.2012.03.045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen B, Liu Y, Jin X, Lu W, Liu J, Xia Z, et al. MicroRNA-26a regulates glucose metabolism by direct targeting PDHX in colorectal cancer cells. BMC Cancer. 2014;14:443. doi:10.1186/1471-2407-14-443.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Gaedcke J, Grade M, Camps J, Sokilde R, Kaczkowski B, Schetter AJ, et al. The rectal cancer microRNAome—microRNA expression in rectal cancer and matched normal mucosa. Clin Cancer Res. 2012;18(18):4919–30. doi:10.1158/1078-0432.ccr-12-0016.

    Article  CAS  PubMed  Google Scholar 

  66. Lin Y, Chen H, Hu Z, Mao Y, Xu X, Zhu Y, et al. miR-26a inhibits proliferation and motility in bladder cancer by targeting HMGA1. FEBS Lett. 2013;587(15):2467–73. doi:10.1016/j.febslet.2013.06.021.

    Article  CAS  PubMed  Google Scholar 

  67. Liu P, Tang H, Chen B, He Z, Deng M, Wu M, et al. miR-26a suppresses tumour proliferation and metastasis by targeting metadherin in triple negative breast cancer. Cancer Lett. 2015;357(1):384–92. doi:10.1016/j.canlet.2014.11.050.

    Article  CAS  PubMed  Google Scholar 

  68. Alajez NM, Shi W, Hui ABY, Bruce J, Lenarduzzi M, Ito E, et al. Enhancer of Zeste homolog 2 (EZH2) is overexpressed in recurrent nasopharyngeal carcinoma and is regulated by miR-26a, miR-101, and miR-98. Cell Death Dis. 2010;1:e85. doi:10.1038/cddis.2010.64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cao P, Deng Z, Wan M, Huang W, Cramer SD, Xu J, et al. MicroRNA-101 negatively regulates Ezh2 and its expression is modulated by androgen receptor and HIF-1 alpha/HIF-1 beta. Mol Cancer. 2010;9:108. doi:10.1186/1476-4598-9-108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Cao W, Ribeiro RD, Liu DA, Saintigny P, Xia RH, Xue YW, et al. EZH2 promotes malignant behaviors via cell cycle dysregulation and its mRNA level associates with prognosis of patient with non-small cell lung cancer. PLoS One. 2012;7(12):e52984. doi:10.1371/journal.pone.0052984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang H-W, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 2009;137(6):1005–17. doi:10.1016/j.cell.2009.04.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Salvatori B, Iosue I, Djodji Damas N, Mangiavacchi A, Chiaretti S, Messina M, et al. Critical role of c-Myc in acute myeloid leukemia involving direct regulation of miR-26a and histone methyltransferase EZH2. Genes Cancer. 2011;2(5):585–92. doi:10.1177/1947601911416357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ichikawa T, Sato F, Terasawa K, Tsuchiya S, Toi M, Tsujimoto G, et al. Trastuzumab produces therapeutic actions by upregulating miR-26a and miR-30b in breast cancer cells. PLoS One. 2012;7(2):e31422. doi:10.1371/journal.pone.0031422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ren T, Wen Z-K, Liu Z-M, Liang Y-J, Guo Z-L, Xu L. Functional expression of TLR9 is associated to the metastatic potential of human lung cancer cell - Functional active role of TLR9 on tumor metastasis. Cancer Biol Ther. 2007;6(11):1704–9.

    Article  CAS  PubMed  Google Scholar 

  75. Chai Z-T, Kong J, Zhu X-D, Zhang Y-Y, Lu L, Zhou J-M, et al. MicroRNA-26a inhibits angiogenesis by down-regulating VEGFA through the PIK3C2 alpha/Akt/HIF-1 alpha pathway in hepatocellular carcinoma. PLoS One. 2013;8(10):e77957. doi:10.1371/journal.pone.0077957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yang X, Zhang XF, Lu X, Jia HL, Liang L, Dong QZ, et al. MicroRNA-26a suppresses angiogenesis in human hepatocellular carcinoma by targeting hepatocyte growth factor-cMet pathway. Hepatology. 2014;59(5):1874–85. doi:10.1002/hep.26941.

    Article  CAS  PubMed  Google Scholar 

  77. Luzi E, Marini F, Sala SC, Tognarini I, Galli G, Brandi ML. Osteogenic differentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor. J Bone Miner Res. 2008;23(2):287–95. doi:10.1359/jbmr.071011.

    Article  CAS  PubMed  Google Scholar 

  78. Jansen MPHM, Reijm EA, Sieuwerts AM, Ruigrok-Ritstier K, Look MP, Rodriguez-Gonzalez FG, et al. High miR-26a and low CDC2 levels associate with decreased EZH2 expression and with favorable outcome on tamoxifen in metastatic breast cancer. Breast Cancer Res Treat. 2012;133(3):937–47. doi:10.1007/s10549-011-1877-4.

    Article  CAS  PubMed  Google Scholar 

  79. Wang G, Sun Y, He Y, Ji C, Hu B, Sun Y. miR-26a promoted by interferon-alpha inhibits hepatocellular carcinoma proliferation and migration by blocking EZH2. Genet Test Mol Biomarkers. 2015;19(1):30–6. doi:10.1089/gtmb.2014.0245.

    Article  PubMed  CAS  Google Scholar 

  80. Yu L, Lu J, Zhang B, Liu X, Wang L, Li S-Y, et al. miR-26a inhibits invasion and metastasis of nasopharyngeal cancer by targeting EZH2. Oncol Lett. 2013;5(4):1223–8. doi:10.3892/ol.2013.1173.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Sander S, Bullinger L, Klapproth K, Fiedler K, Kestler HA, Barth TFE, et al. MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood. 2008;112(10):4202–12. doi:10.1182/blood-2008-03-147645.

    Article  CAS  PubMed  Google Scholar 

  82. Guo P, Nie Q, Lan J, Ge J, Qiu Y, Mao Q. C-Myc negatively controls the tumor suppressor PTEN by upregulating miR-26a in glioblastoma multiforme cells. Biochem Biophys Res Commun. 2013;441(1):186–90. doi:10.1016/j.bbrc.2013.10.034.

    Article  CAS  PubMed  Google Scholar 

  83. Zou Z-J, Fan L, Wang L, Xu J, Zhang R, Tian T, et al. miR-26a and miR-214 down-regulate expression of the PTEN gene in chronic lymphocytic leukemia, but not PTEN mutation or promoter methylation. Oncotarget. 2015;6(2):1276–85.

    Article  PubMed  Google Scholar 

  84. Slaby O, Redova M, Poprach A, Nekvindova J, Iliev R, Radova L, et al. Identification of MicroRNAs associated with early relapse after nephrectomy in renal cell carcinoma patients. Genes Chromosom Cancer. 2012;51(7):707–16. doi:10.1002/gcc.21957.

    Article  CAS  PubMed  Google Scholar 

  85. Zhang Y, Zhang B, Zhang A, Li X, Liu J, Zhao J, et al. IL-6 upregulation contributes to the reduction of miR-26a expression in hepatocellular carcinoma cells. Braz J Med Biol Res. 2013;46(1):32–8. doi:10.1590/s0100-879x2012007500155.

    Article  CAS  PubMed  Google Scholar 

  86. Liu Y, Li J, Dai R, Duan C, Chen S, Yan D, et al. Analysis of expressive proteome in human hepatocarcinoma cell HepG2 transfected with miR -26a mimics. Chin J Pathophysiol. 2011;27(2):367–70. 74.

    Google Scholar 

  87. Bourdon JC, De Laurenzi V, Melino G, Lane D. p53: 25 years of research and more questions to answer. Cell Death Differ. 2003;10(4):397–9. doi:10.1038/sj.cdd.4401243.

    Article  CAS  PubMed  Google Scholar 

  88. Hermeking H. MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat Rev Cancer. 2012;12(9):613–26. doi:10.1038/nrc3318.

    Article  CAS  PubMed  Google Scholar 

  89. Xi YG, Shalgi R, Fodstad O, Pilpel Y, Ju JF. Differentially regulated micro-RNAs and actively translated messenger RNA transcripts by tumor suppressor p53 in colon cancer. Clin Cancer Res. 2006;12(7):2014–24. doi:10.1158/1078-0432.ccr-05-1853.

    Article  CAS  PubMed  Google Scholar 

  90. Brown JP, Wei WY, Sedivy JM. Bypass of senescence after disruption of p21(CIP1/WAF1) gene in normal diploid human fibroblasts. Science. 1997;277(5327):831–4. doi:10.1126/science.277.5327.831.

    Article  CAS  PubMed  Google Scholar 

  91. Deng CX, Zhang PM, Harper JW, Elledge SJ, Leder P. Mice lacking P21(C/P1/WAF1) undergo normal development, but are defective in G1 checkpoint control. Cell. 1995;82(4):675–84. doi:10.1016/0092-8674(95)90039-x.

    Article  CAS  PubMed  Google Scholar 

  92. Lezina L, Purmessur N, Antonov AV, Ivanova T, Karpova E, Krishan K, et al. miR-16 and miR-26a target checkpoint kinases Wee1 and Chk1 in response to p53 activation by genotoxic stress. Cell Death Dis. 2013;4:e953. doi:10.1038/cddis.2013.483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Batchu RB, Gruzdyn OV, Qazi AM, Raur J, Mahmud EM, Weaver DW, et al. Enhanced phosphorylation of p53 by microRNA-26a leading to growth inhibition of pancreatic cancer. Surgery. 2015;158(4):981–6. doi:10.1016/j.surg.2015.05.019.

    Article  PubMed  Google Scholar 

  94. Wei DY, Gong WD, Oh SC, Li Q, Kim WD, Wang LW, et al. Loss of RUNX3 expression significantly affects the clinical outcome of gastric cancer patients and its restoration causes drastic suppression of tumor growth and metastasis. Cancer Res. 2005;65(11):4809–16. doi:10.1158/0008-5472.can-04-3741.

    Article  CAS  PubMed  Google Scholar 

  95. Li W, Yuan Y, Huang L, Qiao M, Zhang Y. Metformin alters the expression profiles of microRNAs in human pancreatic cancer cells. Diabetes Res Clin Pract. 2012;96(2):187–95. doi:10.1016/j.diabres.2011.12.028.

    Article  CAS  PubMed  Google Scholar 

  96. Shao Y, Zhu S-T, Li P, Wang Y-J, Wu Y-D, Cao B-W, et al. MiR-26a and miR-144 regulate COX-2 to inhibit esophageal squamous cell cancer in vitro and in vivo. J Gastroenterol Hepatol. 2013;28:439.

    Google Scholar 

  97. Wang S, Dong W, Xie J, He L, Zhou X, Cai Y, et al. miR-26a inhibits cell proliferation by regulating TFAP2C expression in ovarian cancer cells. Tumor. 2014;34(10):908–12. 56.

    CAS  Google Scholar 

  98. Shellman Y, Reuland S, Smith S, Bemis L, Goldstein N, Almeida A, et al. Therapeutic potential of miR-26a in treating melanoma and identification of BAG4/SODD as a novel target of miR-26a. J Invest Dermatol. 2013;133:S225-S.

    Google Scholar 

  99. Mishra S, Ande SR, Nyomba BLG. The role of prohibitin in cell signaling. FEBS J. 2010;277(19):3937–46. doi:10.1111/j.1742-4658.2010.07809.x.

    Article  CAS  PubMed  Google Scholar 

  100. Huang C, Tian Y, Wang D, Han S, Li X. Expression and significance of miR-26a in intrahepatic cholangiocarcinoma. Chin J Hepatobiliary Surg. 2013;19(12):898–903.

    CAS  Google Scholar 

  101. Lee DH, Amanat S, Goff C, Weiss LM, Said JW, Doan NB, et al. Overexpression of miR-26a-2 in human liposarcoma is correlated with poor patient survival. Oncogenesis. 2013;2:e47. doi:10.1038/oncsis.2013.10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rabinovich A, Medina L, Piura B, Segal S, Huleihel M. Regulation of ovarian carcinoma SKOV-3 cell proliferation and secretion of MMPs by autocrine IL-6. Anticancer Res. 2007;27(1A):267–72.

    CAS  PubMed  Google Scholar 

  103. Lou W, Ni ZY, Dyer K, Tweardy DJ, Gao AC. Interleukin-6 induces prostate cancer cell growth accompanied by activation of Stat3 signaling pathway. Prostate. 2000;42(3):239–42. doi:10.1002/(sici)1097-0045(20000215)42:3<239::aid-pros10>3.0.co;2-g.

    Article  CAS  PubMed  Google Scholar 

  104. Malinowska K, Neuwirt H, Cavarretta IT, Bektic J, Steiner H, Dietrich H, et al. Interleukin-6 stimulation of growth of prostate cancer in vitro and in vivo through activation of the androgen receptor. Endocr Relat Cancer. 2009;16(1):155–69. doi:10.1677/erc-08-0174.

    Article  CAS  PubMed  Google Scholar 

  105. Santer FR, Malinowska K, Culig Z, Cavarretta IT. Interleukin-6 trans-signalling differentially regulates proliferation, migration, adhesion and maspin expression in human prostate cancer cells. Endocr Relat Cancer. 2010;17(1):241–53. doi:10.1677/erc-09-0200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. van Zijl F, Zulehner G, Petz M, Schneller D, Kornauth C, Hau M, et al. Epithelial-mesenchymal transition in hepatocellular carcinoma. Future Oncol. 2009;5(8):1169–79. doi:10.2217/fon.09.91.

    Article  PubMed  Google Scholar 

  107. Ma D-N, Chai Z-T, Zhu X-D, Zhang N, Zhan D-H, Ye B-G, et al. MicroRNA-26a suppresses epithelial-mesenchymal transition in human hepatocellular carcinoma by repressing enhancer of zeste homolog 2. J Hematol Oncol. 2016;9:1. doi:10.1186/s13045-015-0229-y.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Fukumoto I, Hanazawa T, Kinoshita T, Kikkawa N, Koshizuka K, Goto Y, et al. MicroRNA expression signature of oral squamous cell carcinoma: functional role of microRNA-26a/b in the modulation of novel cancer pathways. Br J Cancer. 2015;112(5):891–900. doi:10.1038/bjc.2015.19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yang H, Fang F, Chang R, Yang L. MicroRNA-140-5p suppresses tumor growth and metastasis by targeting transforming growth factor beta receptor 1 and fibroblast growth factor 9 in hepatocellular carcinoma. Hepatology. 2013;58(1):205–17. doi:10.1002/hep.26315.

    Article  CAS  PubMed  Google Scholar 

  110. Li ZG, Mathew P, Yang J, Starbuck MW, Zurita AJ, Liu J, et al. Androgen receptor-negative human prostate cancer cells induce osteogenesis in mice through FGF9-mediated mechanisms. J Clin Investig. 2008;118(8):2697–710. doi:10.1172/jci33093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hendrix ND, Wu R, Kuick R, Schwartz DR, Fearon ER, Cho KR. Fibroblast growth factor 9 has oncogenic activity and is a downstream target of Wnt signaling in ovarian endometrioid adenocarcinomas. Cancer Res. 2006;66(3):1354–62. doi:10.1158/0008-5472.can-05-3694.

    Article  CAS  PubMed  Google Scholar 

  112. Kwon Y, Kim Y, Eom S, Kim M, Park D, Kim H, et al. MicroRNA-26a/-26b-COX-2-MIP-2 loop regulates allergic inflammation and allergic inflammation-promoted enhanced tumorigenic and metastatic potential of cancer cells. J Biol Chem. 2015;290(22):14245–66. doi:10.1074/jbc.M115.645580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhang X, Cheng S-L, Bian K, Wang L, Zhang X, Yan B, et al. MicroRNA-26a promotes anoikis in human hepatocellular carcinoma cells by targeting alpha5 integrin. Oncotarget. 2015;6(4):2277–89.

    Article  PubMed  Google Scholar 

  114. Gosu V, Basith S, Kwon OP, Choi S. Therapeutic applications of nucleic acids and their analogues in toll-like receptor signaling. Molecules. 2012;17(11):13503–29. doi:10.3390/molecules171113503.

    Article  CAS  PubMed  Google Scholar 

  115. Jiang D-S, Wang Y-W, Jiang J, Li S-M, Liang S-Z, Fang H-Y. MicroRNA-26a involved in toll-like receptor 9-mediated lung cancer growth and migration. Int J Mol Med. 2014;34(1):307–12. doi:10.3892/ijmm.2014.1764.

    CAS  PubMed  Google Scholar 

  116. Zhang Y-F, Zhang A-R, Zhang B-C, Rao Z-G, Gao J-F, Lv M-H, et al. MiR-26a regulates cell cycle and anoikis of human esophageal adenocarcinoma cells through Rb1-E2F1 signaling pathway. Mol Biol Rep. 2013;40(2):1711–20. doi:10.1007/s11033-012-2222-7.

    Article  CAS  PubMed  Google Scholar 

  117. Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase-AKT pathway in human cancer. Nat Rev Cancer. 2002;2(7):489–501. doi:10.1038/mrc839.

    Article  CAS  PubMed  Google Scholar 

  118. Jiang B-H, Liu L-Z. PI3K/PTEN signaling in angiogenesis and tumorigenesis. In: Woude GFV, Klein G, editors. Advances in cancer research, vol 102. Advances in Cancer Research; 2009. p. 19–65.

  119. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. doi:10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  120. Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11(2):85–95. doi:10.1038/nrc2981.

    Article  CAS  PubMed  Google Scholar 

  121. Chen B, Li H, Zeng X, Yang P, Liu X, Zhao X, et al. Roles of microRNA on cancer cell metabolism. J Transl Med. 2012;10:228. doi:10.1186/1479-5876-10-228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Pucci S, Mazzarelli P. MicroRNA dysregulation in colon cancer microenvironment interactions: the importance of small things in metastases. Cancer Microenviron Off J Int Cancer Microenviron Soc. 2011;4(2):155–62. doi:10.1007/s12307-011-0062-y.

    Article  CAS  Google Scholar 

  123. Fang R, Xiao T, Fang Z, Sun Y, Li F, Gao Y, et al. MicroRNA-143 (miR-143) regulates cancer glycolysis via targeting hexokinase 2 gene. J Biol Chem. 2012;287(27):23227–35. doi:10.1074/jbc.M112.373084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Fei X, Qi M, Wu B, Song Y, Wang Y, Li T. MicroRNA-195-5p suppresses glucose uptake and proliferation of human bladder cancer T24 cells by regulating GLUT3 expression. FEBS Lett. 2012;586(4):392–7. doi:10.1016/j.febslet.2012.01.006.

    Article  CAS  PubMed  Google Scholar 

  125. Peschiaroli A, Giacobbe A, Formosa A, Markert EK, Bongiorno-Borbone L, Levine AJ, et al. miR-143 regulates hexokinase 2 expression in cancer cells. Oncogene. 2013;32(6):797–802. doi:10.1038/onc.2012.100.

    Article  CAS  PubMed  Google Scholar 

  126. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006;103(7):2257–61. doi:10.1073/pnas.0510565103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Stacpoole PW. The pyruvate dehydrogenase complex as a therapeutic target for age-related diseases. Aging Cell. 2012;11(3):371–7. doi:10.1111/j.1474-9726.2012.00805.x.

    Article  CAS  PubMed  Google Scholar 

  128. Fkih M’hamed I, Privat M, Ponelle F, Penault-Llorca F, Kenani A, Bignon Y-J. Identification of miR-10b, miR-26a, miR-146a and miR-153 as potential triple-negative breast cancer biomarkers. Cell Oncol (Dordrecht). 2015;38(6):433–42. doi:10.1007/s13402-015-0239-3.

    Article  CAS  Google Scholar 

  129. Viprey VF, Corrias MV, Burchill SA. Identification of reference microRNAs and suitability of archived hemopoietic samples for robust microRNA expression profiling. Anal Biochem. 2012;421(2):566–72. doi:10.1016/j.ab.2011.10.022.

    Article  CAS  PubMed  Google Scholar 

  130. Ghanbari R, Mosakhani N, Asadi J, Nouraee N, Mowla SJ, Yazdani Y, et al. Downregulation of plasma MiR-142-3p and MiR-26a-5p in patients with colorectal carcinoma. Iran J Cancer Prev. 2015;8(3):e2329-e. doi:10.17795/ijcp2329.

    Article  Google Scholar 

  131. Wang L-J, Zhang K-L, Zhang N, Ma X-W, Yan S-W, Cao D-H, et al. Serum miR-26a as a diagnostic and prognostic biomarker in cholangiocarcinoma. Oncotarget. 2015;6(21):18631–40.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Kasinski AL, Slack FJ. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer. 2011;11(12):849–64. doi:10.1038/nrc3166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wen L, Cheng F, Zhou Y, Yin C. MiR-26a enhances the sensitivity of gastric cancer cells to cisplatin by targeting NRAS and E2F2. Saudi J Gastroenterol. 2015;21(5):313–9. doi:10.4103/1319-3767.166206.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Zhang J, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer. 2009;9(1):28–39. doi:10.1038/nrc2559.

    Article  PubMed  CAS  Google Scholar 

  135. Pouliot LM, Chen Y-C, Bai J, Guha R, Martin SE, Gottesman MM, et al. Cisplatin sensitivity mediated by WEE1 and CHK1 is mediated by miR-155 and the miR-15 family. Cancer Res. 2012;72(22):5945–55. doi:10.1158/0008-5472.can-12-1400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kawabe T. G(2) checkpoint abrogators as anticancer drugs. Mol Cancer Ther. 2004;3(4):513–9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui Wang or Longbang Chen.

Ethics declarations

Funding

This study was funded by the National Natural Science Foundation of China: 81172106, 81272474, and 81572933

Conflicts of interest

None

Additional information

Jing Chen, Kai Zhang and Yuejuan Xu are cofirst authors and contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Zhang, K., Xu, Y. et al. The role of microRNA-26a in human cancer progression and clinical application. Tumor Biol. 37, 7095–7108 (2016). https://doi.org/10.1007/s13277-016-5017-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5017-y

Keywords

Navigation