Advertisement

Tumor Biology

, Volume 37, Issue 8, pp 11443–11456 | Cite as

MGMT in colorectal cancer: a promising component of personalized treatment

  • Le Zhang
  • Jing Zeng
  • Zhaolei Zeng
  • Fenghua Wang
  • Deshen Wang
  • Cui Chen
  • Cong Li
  • Xin An
  • Ruihua Xu
  • Peng Huang
  • Yi Ba
  • Yuhong Li
Original Article

Abstract

The identification of new, effective drugs is a pressing need in colorectal cancer (CRC) rescue therapy. Data examining O 6-methylguanine-DNA-methyl transferase (MGMT) and its predictive role in temozolomide (TMZ) treatment in CRC are scarce. In this study, the effect of MGMT status on the cytotoxic sensitivity caused by TMZ was analyzed using cytology proliferation assays in colon cancer cell lines. MGMT protein expression was assessed with immunohistochemistry in 385 patients. Concordance between primary and metastatic sites and the role of MGMT status on survival were statistically analyzed. TMZ sensitivity was significantly affected by the level of MGMT protein expression. Of 385 cases, 13 (3.4 %) demonstrated loss of MGMT expression. However, low MGMT expression levels were significantly more common in signet ring cell carcinomas (p = 0.011). In 111 of 385 cases, the overall concordance of MGMT status between primary tumor and metastatic sites was 66.67 % (κ = 0.271, p < 0.001). The median progression-free survival was significantly different between groups with low or high MGMT expression for the irinotecan-based regimen (p = 0.025), but MGMT protein expression was not observed to be a prognostic factor. In conclusion, MGMT was an important in vitro predictor of TMZ activity in CRC. The rate of MGMT protein loss was low in metastatic CRC patients from China, and MGMT might be more commonly lost in signet ring cell carcinoma. The MGMT status at primary and metastatic sites was consistent, but the power of concordance was poor. Further study into these topics is warranted.

Keywords

Colorectal cancer Immunohistochemistry MGMT Temozolomide 

Notes

Compliance with ethical standards

All of the procedures performed in the study involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki Declaration and its later amendments. Informed consent was obtained from each participant included in the study.

Conflicts of interest

None.

References

  1. 1.
    Van Cutsem E, Kohne CH, Hitre E, Zaluski J, Chang Chien CR, Makhson A, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 2009;360(14):1408–17. doi: 10.1056/NEJMoa0805019.CrossRefPubMedGoogle Scholar
  2. 2.
    Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350(23):2335–42. doi: 10.1056/NEJMoa032691.CrossRefPubMedGoogle Scholar
  3. 3.
    Saltz LB, Clarke S, Diaz-Rubio E, Scheithauer W, Figer A, Wong R, et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26(12):2013–9. doi: 10.1200/JCO.2007.14.9930.CrossRefGoogle Scholar
  4. 4.
    Grothey A, Sugrue MM, Purdie DM, Dong W, Sargent D, Hedrick E, et al. Bevacizumab beyond first progression is associated with prolonged overall survival in metastatic colorectal cancer: results from a large observational cohort study (BRiTE). J Clin Oncol Off J Am Soc Clin Oncol. 2008;26(33):5326–34. doi: 10.1200/JCO.2008.16.3212.CrossRefGoogle Scholar
  5. 5.
    Bokemeyer C, Van Cutsem E, Rougier P, Ciardiello F, Heeger S, Schlichting M, et al. Addition of cetuximab to chemotherapy as first-line treatment for KRAS wild-type metastatic colorectal cancer: pooled analysis of the CRYSTAL and OPUS randomised clinical trials. Eur J Cancer. 2012;48(10):1466–75. doi: 10.1016/j.ejca.2012.02.057.CrossRefPubMedGoogle Scholar
  6. 6.
    Tournigand C, Andre T, Achille E, Lledo G, Flesh M, Mery-Mignard D, et al. FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. J Clin Oncol Off J Am Soc Clin Oncol. 2004;22(2):229–37. doi: 10.1200/JCO.2004.05.113.CrossRefGoogle Scholar
  7. 7.
    Grothey A, Van Cutsem E, Sobrero A, Siena S, Falcone A, Ychou M, et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet. 2013;381(9863):303–12. doi: 10.1016/S0140-6736(12)61900-X.CrossRefPubMedGoogle Scholar
  8. 8.
    Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003. doi: 10.1056/NEJMoa043331.CrossRefPubMedGoogle Scholar
  9. 9.
    Dehdashti AR, Hegi ME, Regli L, Pica A, Stupp R. New trends in the medical management of glioblastoma multiforme: the role of temozolomide chemotherapy. Neurosurg Focus. 2006;20(4):E6. doi: 10.3171/foc.2006.20.4.3.PubMedGoogle Scholar
  10. 10.
    Hegi ME, Liu L, Herman JG, Stupp R, Wick W, Weller M, et al. Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26(25):4189–99. doi: 10.1200/JCO.2007.11.5964.CrossRefGoogle Scholar
  11. 11.
    Natarajan AT, Vermeulen S, Darroudi F, Valentine MB, Brent TP, Mitra S, et al. Chromosomal localization of human O6-methylguanine-DNA methyltransferase (MGMT) gene by in situ hybridization. Mutagenesis. 1992;7(1):83–5.CrossRefPubMedGoogle Scholar
  12. 12.
    Gerson SL. MGMT: its role in cancer aetiology and cancer therapeutics. Nat Rev Cancer. 2004;4(4):296–307. doi: 10.1038/nrc1319.CrossRefPubMedGoogle Scholar
  13. 13.
    Shacham-Shmueli E, Beny A, Geva R, Blachar A, Figer A, Aderka D. Response to temozolomide in patients with metastatic colorectal cancer with loss of MGMT expression: a new approach in the era of personalized medicine? J Clin Oncol Off J Am Soc Clin Oncol. 2011;29(10):e262–5. doi: 10.1200/JCO.2010.32.0242.CrossRefGoogle Scholar
  14. 14.
    Dolan ME, Moschel RC, Pegg AE. Depletion of mammalian O6-alkylguanine-DNA alkyltransferase activity by O6-benzylguanine provides a means to evaluate the role of this protein in protection against carcinogenic and therapeutic alkylating agents. Proc Natl Acad Sci U S A. 1990;87(14):5368–72.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Dolan ME, Mitchell RB, Mummert C, Moschel RC, Pegg AE. Effect of O6-benzylguanine analogues on sensitivity of human tumor cells to the cytotoxic effects of alkylating agents. Cancer Res. 1991;51(13):3367–72.PubMedGoogle Scholar
  16. 16.
    Jones PA. Altering gene expression with 5-azacytidine. Cell. 1985;40(3):485–6.CrossRefPubMedGoogle Scholar
  17. 17.
    Taylor SM, Constantinides PA, Jones PA. 5-Azacytidine, DNA methylation, and differentiation. Curr Top Microbiol Immunol. 1984;108:115–27.PubMedGoogle Scholar
  18. 18.
    Glover AB, Leyland-Jones B. Biochemistry of azacitidine: a review. Cancer Treat Rep. 1987;71(10):959–64.PubMedGoogle Scholar
  19. 19.
    Nagasaka T, Goel A, Notohara K, Takahata T, Sasamoto H, Uchida T, et al. Methylation pattern of the O6-methylguanine-DNA methyltransferase gene in colon during progressive colorectal tumorigenesis. Int J Cancer J Int Cancer. 2008;122(11):2429–36. doi: 10.1002/ijc.23398.CrossRefGoogle Scholar
  20. 20.
    Braun MS, Richman SD, Quirke P, Daly C, Adlard JW, Elliott F, et al. Predictive biomarkers of chemotherapy efficacy in colorectal cancer: results from the UK MRC FOCUS trial. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26(16):2690–8. doi: 10.1200/JCO.2007.15.5580.CrossRefGoogle Scholar
  21. 21.
    Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A. 1996;93(18):9821–6.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–66. doi: 10.1016/S1470-2045(09)70025-7.CrossRefPubMedGoogle Scholar
  23. 23.
    Ferguson AT, Lapidus RG, Baylin SB, Davidson NE. Demethylation of the estrogen receptor gene in estrogen receptor-negative breast cancer cells can reactivate estrogen receptor gene expression. Cancer Res. 1995;55(11):2279–83.PubMedGoogle Scholar
  24. 24.
    Shima K, Morikawa T, Baba Y, Nosho K, Suzuki M, Yamauchi M, et al. MGMT promoter methylation, loss of expression and prognosis in 855 colorectal cancers. Cancer Causes Control CCC. 2011;22(2):301–9. doi: 10.1007/s10552-010-9698-z.CrossRefPubMedGoogle Scholar
  25. 25.
    Kakar S, Deng G, Smyrk TC, Cun L, Sahai V, Kim YS. Loss of heterozygosity, aberrant methylation, BRAF mutation and KRAS mutation in colorectal signet ring cell carcinoma. Mod Pathol Off J US Can Acad Pathol Inc. 2012;25(7):1040–7. doi: 10.1038/modpathol.2012.44.Google Scholar
  26. 26.
    Shen L, Kondo Y, Rosner GL, Xiao L, Hernandez NS, Vilaythong J, et al. MGMT promoter methylation and field defect in sporadic colorectal cancer. J Natl Cancer Inst. 2005;97(18):1330–8. doi: 10.1093/jnci/dji275.CrossRefPubMedGoogle Scholar
  27. 27.
    Whitehall VL, Walsh MD, Young J, Leggett BA, Jass JR. Methylation of O-6-methylguanine DNA methyltransferase characterizes a subset of colorectal cancer with low-level DNA microsatellite instability. Cancer Res. 2001;61(3):827–30.PubMedGoogle Scholar
  28. 28.
    Okamoto R, Takano H, Okamura T, Park JS, Tanimoto K, Sekikawa T, et al. O(6)-methylguanine-DNA methyltransferase (MGMT) as a determinant of resistance to camptothecin derivatives. Japanese J Cancer Res Gann. 2002;93(1):93–102.CrossRefGoogle Scholar
  29. 29.
    Kuo CC, Liu JF, Chang JY. DNA repair enzyme, O6-methylguanine DNA methyltransferase, modulates cytotoxicity of camptothecin-derived topoisomerase I inhibitors. J Pharmacol Exp Ther. 2006;316(2):946–54. doi: 10.1124/jpet.105.095919.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Le Zhang
    • 1
    • 2
    • 3
  • Jing Zeng
    • 1
    • 4
  • Zhaolei Zeng
    • 1
    • 5
  • Fenghua Wang
    • 1
    • 2
  • Deshen Wang
    • 1
    • 2
  • Cui Chen
    • 1
    • 2
  • Cong Li
    • 1
    • 2
  • Xin An
    • 1
    • 2
  • Ruihua Xu
    • 1
    • 2
  • Peng Huang
    • 1
    • 5
    • 6
  • Yi Ba
    • 3
  • Yuhong Li
    • 1
    • 2
  1. 1.State Key Laboratory of Oncology in South ChinaSun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer MedicineGuangzhouChina
  2. 2.Department of Medical OncologySun Yat-sen University Cancer CenterGuangzhouChina
  3. 3.Department of Gastrointestinal Medical OncologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and TherapyTianjinChina
  4. 4.Department of PathologySun Yat-sen University Cancer CenterGuangzhouChina
  5. 5.Department of Experimental ResearchSun Yat-sen University Cancer CenterGuangzhouChina
  6. 6.Department of Molecular PathologyThe University of Texas M.D. Anderson Cancer CenterHoustonUSA

Personalised recommendations