Skip to main content

Advertisement

Log in

Naringenin inhibits proliferation, migration, and invasion as well as induces apoptosis of gastric cancer SGC7901 cell line by downregulation of AKT pathway

  • Original Article
  • Published:
Tumor Biology

Abstract

The preliminary anti-cancer activity of Naringenin (Nar) has been proven in several cancers. However, the therapeutic activity of Nar on gastric cancer SGC-7901 cell line is not yet well understood. The aim of the present study was to investigate the effect and mechanisms of Nar on proliferation, apoptosis, migration, and invasion of SGC-7901 cells. In this in vitro study, SGC-7901 cells were treated with Nar at serial concentrations. Our data showed that Nar efficiently inhibited SGC-7901 cell proliferation in a time- and concentration-dependent manner, as well as downregulated proliferating cell nuclear antigen (PCNA) levels in a concentration-dependent manner. Meanwhile, the cell migration and invasion also dramatically decreased after Nar incubation, and the expressions of MMP2 and MMP9 were significantly downregulated. In addition, a strong proapoptotic effect was observed in the SGC-7901 cells after Nar treatment. Apoptosis-related proteins Bax and cleaved caspase-3 were up-regulated, whereas Bcl-2 and Survivin were downregulated. After administration with Nar, we found that phosphorylation of AKT was inhibited, and this inhibitory action could be mildly enhanced by the combination treatment of Nar and AKT inhibitor LY294002. In conclusion, our study confirmed that Nar could inhibit SGC-7901cell proliferation, migration, and invasion as well as induces apoptosis, and Nar might provide a new potential therapeutic strategy for treating gastric cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Nar:

Naringenin

PCNA:

Proliferating cell nuclear antigen

MMPs:

Matrix metalloproteinases

MAPK:

Mitogen-activated kinase

MTT:

3-(4,5-Dimethyl-2-yl)-2,5-diphenyltetrazolium bromide

FBS:

Fetal bovine serum

ECL:

Enhanced chemiluminescence

FACS:

Fluorescence activated cell sorting

ECM:

Extracellular matrix

References

  1. Piazuelo MB, Correa P. Gastric cancer: overview. Colomb Med (Cali). 2013;44:192–201.

    Google Scholar 

  2. Soerjomataram I, Lortet-Tieulent J, Parkin DM, Ferlay J, Mathers C, et al. Global burden of cancer in 2008: a systematic analysis of disability-adjusted life-years in 12 world regions. Lancet. 2012;380:1840–50.

    Article  PubMed  Google Scholar 

  3. Hsiao WL, Liu L. The role of traditional Chinese herbal medicines in cancer therapy—from TCM theory to mechanistic insights. Planta Med. 2010;76:1118–31.

    Article  CAS  PubMed  Google Scholar 

  4. Meiyanto E, Hermawan A, Anindyajati. Natural products for cancer-targeted therapy: citrus flavonoids as potent chemopreventive agents. Asian Pac J Cancer Prev. 2012;13:427–36.

    Article  PubMed  Google Scholar 

  5. Bodet C, La VD, Epifano F, Grenier D. Naringenin has anti-inflammatory properties in macrophage and ex vivo human whole-blood models. J Periodontal Res. 2008;43:400–7.

    Article  CAS  PubMed  Google Scholar 

  6. Lee CH, Jeong TS, Choi YK, Hyun BH, Oh GT, et al. Anti-atherogenic effect of citrus flavonoids, naringin and naringenin, associated with hepatic ACAT and aortic VCAM-1 and MCP-1 in high cholesterol-fed rabbits. Biochem Biophys Res Commun. 2001;284:681–8.

    Article  CAS  PubMed  Google Scholar 

  7. Wang J, Yang Z, Lin L, Zhao Z, Liu Z, et al. Protective effect of naringenin against lead-induced oxidative stress in rats. Biol Trace Elem Res. 2012;146:354–9.

    Article  CAS  PubMed  Google Scholar 

  8. Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3:453–8.

    Article  CAS  PubMed  Google Scholar 

  9. Maggioni D, Nicolini G, Rigolio R, Biffi L, Pignataro L, et al. Myricetin and naringenin inhibit human squamous cell carcinoma proliferation and migration in vitro. Nutr Cancer. 2014;66:1257–67.

    Article  CAS  PubMed  Google Scholar 

  10. Li RF, Feng YQ, Chen JH, Ge LT, Xiao SY, et al. Naringenin suppresses K562 human leukemia cell proliferation and ameliorates adriamycin-induced oxidative damage in polymorphonuclear leukocytes. Exp Ther Med. 2015;9:697–706.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Liao AC, Kuo CC, Huang YC, Yeh CW, Hseu YC, et al. Naringenin inhibits migration of bladder cancer cells through downregulation of AKT and MMP-2. Mol Med Rep. 2014;10:1531–6.

    CAS  PubMed  Google Scholar 

  12. Yen HR, Liu CJ, Yeh CC. Naringenin suppresses TPA-induced tumor invasion by suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells. Chem Biol Interact. 2015;235:1–9.

    Article  CAS  PubMed  Google Scholar 

  13. Qin L, Jin L, Lu L, Lu X, Zhang C, et al. Naringenin reduces lung metastasis in a breast cancer resection model. Protein Cell. 2011;2:507–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Weng CJ, Yen GC. Flavonoids, a ubiquitous dietary phenolic subclass, exert extensive in vitro anti-invasive and in vivo anti-metastatic activities. Cancer Metastasis Rev. 2012;31:323–51.

    Article  CAS  PubMed  Google Scholar 

  15. Mir IA, Tiku AB. Chemopreventive and therapeutic potential of “naringenin,” a flavanone present in citrus fruits. Nutr Cancer. 2015;67:27–42.

    Article  CAS  PubMed  Google Scholar 

  16. Krishnakumar N, Sulfikkarali NK, Manoharan S, Nirmal RM. Screening of chemopreventive effect of naringenin-loaded nanoparticles in DMBA-induced hamster buccal pouch carcinogenesis by FT-IR spectroscopy. Mol Cell Biochem. 2013;382:27–36.

    Article  CAS  PubMed  Google Scholar 

  17. Sulfikkarali N, Krishnakumar N, Manoharan S, Nirmal RM. Chemopreventive efficacy of naringenin-loaded nanoparticles in 7,12-dimethylbenz(A)anthracene induced experimental oral carcinogenesis. Pathol Oncol Res. 2013;19:287–96.

    Article  CAS  PubMed  Google Scholar 

  18. Shi WT, Wei L, Xiang J, Su K, Ding Q, et al. Chinese patients with gastric cancer need targeted adjuvant chemotherapy schemes. Asian Pac J Cancer Prev. 2012;13:5263–72.

    Article  PubMed  Google Scholar 

  19. Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nat Rev Cancer. 2002;2:91–100.

    Article  PubMed  Google Scholar 

  20. Pontier SM, Muller WJ. Integrins in breast cancer dormancy. APMIS. 2008;116:677–84.

    Article  CAS  PubMed  Google Scholar 

  21. Li H, Zhu F, Chen H, Cheng KW, Zykova T, et al. 6-C-(E-phenylethenyl)-naringenin suppresses colorectal cancer growth by inhibiting cyclooxygenase-1. Cancer Res. 2014;74:243–52.

    Article  CAS  PubMed  Google Scholar 

  22. Lee JH, Park CH, Jung KC, Rhee HS, Yang CH. Negative regulation of beta-catenin/Tcf signaling by naringenin in AGS gastric cancer cell. Biochem Biophys Res Commun. 2005;335:771–6.

    Article  CAS  PubMed  Google Scholar 

  23. Ekambaram G, Rajendran P, Magesh V, Sakthisekaran D. Naringenin reduces tumor size and weight lost in N-methyl-N′-nitro-N-nitrosoguanidine-induced gastric carcinogenesis in rats. Nutr Res. 2008;28:106–12.

    Article  CAS  PubMed  Google Scholar 

  24. Ekambaram G, Rajendran P, Devaraja R, Muthuvel R, Sakthisekaran D. Impact of naringenin on glycoprotein levels in N-methyl-N′-nitro-N-nitrosoguanidine-induced gastric carcinogenesis in rats. Anti Cancer Drugs. 2008;19:885–90.

    Article  CAS  PubMed  Google Scholar 

  25. Yang L, Allred KF, Geera B, Allred CD, Awika JM. Sorghum phenolics demonstrate estrogenic action and induce apoptosis in nonmalignant colonocytes. Nutr Cancer. 2012;64:419–27.

    Article  CAS  PubMed  Google Scholar 

  26. Bulzomi P, Bolli A, Galluzzo P, Acconcia F, Ascenzi P, et al. The naringenin-induced proapoptotic effect in breast cancer cell lines holds out against a high bisphenol a background. IUBMB Life. 2012;64:690–6.

    Article  CAS  PubMed  Google Scholar 

  27. Matsuzawa A, Nishitoh H, Tobiume K, Takeda K, Ichijo H. Physiological roles of ASK1-mediated signal transduction in oxidative stress- and endoplasmic reticulum stress-induced apoptosis: advanced findings from ASK1 knockout mice. Antioxid Redox Signal. 2002;4:415–25.

    Article  CAS  PubMed  Google Scholar 

  28. Rooswinkel RW, van de Kooij B, de Vries E, Paauwe M, Braster R, et al. Antiapoptotic potency of Bcl-2 proteins primarily relies on their stability, not binding selectivity. Blood. 2014;123:2806–15.

    Article  CAS  PubMed  Google Scholar 

  29. Kotsafti A, Farinati F, Cardin R, Cillo U, Nitti D, et al. Autophagy and apoptosis-related genes in chronic liver disease and hepatocellular carcinoma. BMC Gastroenterol. 2012;12:118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sahai E. Mechanisms of cancer cell invasion. Curr Opin Genet Dev. 2005;15:87–96.

    Article  CAS  PubMed  Google Scholar 

  31. Singh D, Srivastava SK, Chaudhuri TK, Upadhyay G. Multifaceted role of matrix metalloproteinases (MMPs). Front Mol Biosci. 2015;2:19.

    PubMed  PubMed Central  Google Scholar 

  32. Fields GB. New strategies for targeting matrix metalloproteinases. Matrix Biol. 2015;44–46:239–46.

    Article  PubMed  Google Scholar 

  33. Sampieri CL, de la Peña S, Ochoa-Lara M, Zenteno-Cuevas R, León-Córdoba K. Expression of matrix metalloproteinases 2 and 9 in human gastric cancer and superficial gastritis. World J Gastroenterol. 2010;16:1500–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chtourou Y, Fetoui H, Jemai R, Ben Slima A, Makni M, et al. Naringenin reduces cholesterol-induced hepatic inflammation in rats by modulating matrix metalloproteinases-2, 9 via inhibition of nuclear factor κB pathway. Eur J Pharmacol. 2015;746:96–105.

    Article  CAS  PubMed  Google Scholar 

  35. Qin Y, Ye GX, Wu CJ, Wang S, Pan DB, et al. Effect of DAPK1 gene on proliferation, migration, and invasion of carcinoma of pancreas BxPC-3 cell line. Int J Clin Exp Pathol. 2014;7:7536–44.

    PubMed  PubMed Central  Google Scholar 

  36. Bosserhoff AK, Ellmann L, Quast AS, Eberle J, Boyle GM, et al. Loss of T-cadherin (CDH-13) regulates AKT signaling and desensitizes cells to apoptosis in melanoma. Mol Carcinog. 2014;53:635–47.

    CAS  PubMed  Google Scholar 

  37. Wen W, Wu J, Liu L, Tian Y, Buettner R, et al. Synergistic anti-tumor effect of combined inhibition of EGFR and JAK/STAT3 pathways in human ovarian cancer. Mol Cancer. 2015;14:100.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Li.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, L., Liu, F., Guo, Hb. et al. Naringenin inhibits proliferation, migration, and invasion as well as induces apoptosis of gastric cancer SGC7901 cell line by downregulation of AKT pathway. Tumor Biol. 37, 11365–11374 (2016). https://doi.org/10.1007/s13277-016-5013-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5013-2

Keywords

Navigation