Skip to main content

Advertisement

Log in

Overexpression of the transcription factor FOXP3 in lung adenocarcinoma sustains malignant character by promoting G1/S transition gene CCND1

  • Original Article
  • Published:
Tumor Biology

Abstract

The Forkhead box P3 (FOXP3) transcription factor is the key driver of the differentiation and immunosuppressive function of regulatory T cells (Tregs). Additionally, FOXP3 has been reported to be expressed in many solid tumor cell lines and tissues. However, its role in tumorigenesis and tumor progression is conflicting, both tumor suppressive and promoting functions have been described. In this study, we demonstrated that FOXP3 was expressed in both lung adenocarcinoma tissues and the lung adenocarcinoma cell line A549. FOXP3 inhibition decreased cell proliferation, migration, and invasion as well as the secretion of inhibitory cytokines (e.g., transforming growth factor beta 1 (TGF-β1), interleukin 35 (IL-35), and heme oxygenase-1 (HMOX1)), suggesting a positive role for FOXP3 in tumor development. Importantly, we found that FOXP3 could enhance lung adenocarcinoma cell proliferation via upregulating the levels of the cell cycle G1/S checkpoint gene CCND1. These data demonstrated that FOXP3 could be regarded as a novel therapeutic target for inhibiting lung adenocarcinoma progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brunkow ME, Jeffery EW, Hjerrild KA, et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet. 2001;27:68–73.

    Article  CAS  PubMed  Google Scholar 

  2. Bennett CL, Christie J, Ramsdell F, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet. 2001;27:20–1.

    Article  CAS  PubMed  Google Scholar 

  3. Schneider T, Kimpfler S, Warth A, et al. FOXP3+ regulatory T cells and naturalkiller cells distinctly infiltrate primary tumors and draininglymph nodes in pulmonary adenocarcinoma. J Thorac Oncol. 2011;6:432–8.

    Article  PubMed  Google Scholar 

  4. Shimizu K, Nakata M, Hirami Y, et al. Tumor-infiltrating FOXP3+ regulatory T cells are correlated with cyclooxygenase-2 expression and are associated with recurrence in resected non-small cell lung cancer. J Thora Oncol. 2010;5:585–90.

    Article  Google Scholar 

  5. Karanikas V, Speletas M, Zamanakou M, Kalala F, Loules G, Kerenidi T, et al. Foxp3 expression in human cancer cells. J Transl Med. 2008;6:19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hinz S, Pagerols-Raluy L, Oberg HH, et al. Foxp3 expression in pancreatic carcinoma cells as a noveral mechanism of immune evasion in cancer. Cancer Res. 2007;67:8344–50.

    Article  CAS  PubMed  Google Scholar 

  7. Triulzi T. FOXP3 expression in tumor cells and implications for cancer progression.Taqliabue E, Balsari A, et al. J Cell Physiol. 2013;1:30–5.

    Article  CAS  Google Scholar 

  8. Redpath M, Xu B, van Kempen LC, et al. The dual role of the X-liked FoxP3 gene in human cancers. Mol Oncol. 2011;2:156–63.

    Article  CAS  Google Scholar 

  9. Jia T, Fu HY, Sun JT, et al. Foxp3 expression in A549 cells is regulated by TLR4 through NF-κB. Mol Med Rep. 2012;6:167–72.

    CAS  PubMed  Google Scholar 

  10. Milkova L, Voelcker V, Forstreuter I, et al. The NF-kappaB signaling pathway is involved un the LPS/IL-2-induced upregulation of Foxp3 expression in human CD4+CD25high regulatory T cells. Exp Med. 2003;4:403–11.

    Google Scholar 

  11. Li B, Samanta A, Song X, et al. FOXP3 ensembles in T-cell regulation. Immunol Rev. 2006;212:99–113.

    Article  CAS  PubMed  Google Scholar 

  12. Martin F, Ladoire S, Mignot G, et al. Human FOXP3 and cancer. Oncogene. 2010;29:4121–9.

    Article  CAS  PubMed  Google Scholar 

  13. Liu R, Kain M, Wang L. Inactivation of X-linked tumor suppressor genes in human cancer. Future Oncol. 2012;8:463–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Niu J, Jiang C, Li C, et al. Foxp3 expression in melanoma cells as a possible mechanism of resistance to immune destruction. Cancer Immunol Immunother. 2011;8:1109–18.

    Article  CAS  Google Scholar 

  15. Ma C, Peng C, Lu X, et al. Downregulation of FOXP3 inhibits invasion and immune escape in cholangiocarcinoma. Biochem Biophys Res Commun. 2015;2:234–9.

    Article  CAS  Google Scholar 

  16. Chen YH, Zhang HH, He GX, et al. Expression of FOXP3 in hepatoma cells can directly promote tumor metastasis in vitro and in vivo. Hepatology. 2012;794A.

  17. Wang G, Liu G, Li X, et al. FOXP3 expression in esophageal cancer cells is caaosiated with poor prognosis in esophageal cancer. Hepatogastroenterology. 2012;119:2186–91.

    Google Scholar 

  18. Zuo T, Liu R, Zhang H, et al. FOXP3 is a novel transcriptional repressor for the breast cancer oncogene SKP2. J Clinl Invest. 2007;117:3765–73.

    CAS  Google Scholar 

  19. Zuo T, Wang L, Morrison C, et al. FOXP3 is an X-linked breast cancer suppressor gene and an important repressor of the HER-2/ErbB2 oncogene. Cell. 2007;129:1275–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ladoire S, Arnould L, Mignot G, et al. Presence of Foxp3 expression in tumor cells predicts better survival in HER2-overexpressing breast cancer patients treated with neoadjuvant chemotherapy. Breast Cancer Res Treat. 2011;125:65–72.

    Article  CAS  PubMed  Google Scholar 

  21. Douqlass S, Meeson AP, Overbeck-Zubrzycka D, et al. Breast cancer metastasis: demonsrtation that FOXP3 regulates CXCR4 expression and the response to CXCL12. J Pathol. 2014;1:74–85.

    Article  CAS  Google Scholar 

  22. Wang L, Liu R, Li W, et al. Somatic single hits inactivate the X-linked tumor suppressor FOXP3 in the prostate. Cancer Cell. 2009;16:336–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li W, Wang L, Katoh H, et al. Identification of a tumor suppressor relay between the FOXP3 and the Hippo pathways in breast and prostate cancers. Cancer Res. 2011;71:2162–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang HY, Sun H. Up-regulation of Foxp3 inhibits cell proliferation, migration and invasion in epithelial ovarian cancer. Cancer Lett. 2010;287:91–7.

    Article  CAS  PubMed  Google Scholar 

  25. Lopes JE, Torqerson TR, Schubert LA, et al. Analysis of FOXP3 reveals multiple domains required for its functions as a transcriptional repressor. J Immunol. 2006;5:3133–42.

    Article  Google Scholar 

  26. Chen C, Rowell EA, Thomas RM, et al. Transcriptional regulation by Foxp3 is associated with direct promoter occupancy and modulation of histone acetylation. J Biol Chem. 2006;281:36828–34.

    Article  CAS  PubMed  Google Scholar 

  27. Du JG, Huang CJ, Zhou BH, et al. Isoform specific inhibition of ror mediated transcriptional activation human foxp3. J Immunol. 2008;180:4785–92.

    Article  CAS  PubMed  Google Scholar 

  28. Harada K, Shimoda S, Kimura Y, et al. Significance of immunoglobulin G4 (IgG4)-positive cells in extrahepatic cholangiocarcinoma: molecular mechanism of IgG4 reaction in cancer tissue. Hepatology. 2012;1:157–64.

    Article  CAS  Google Scholar 

  29. Ebert LM, Tan BS, Browning J, et al. The regulatory T cell-associated transcription factor FoxP3 is expressed by tumor cells. Cancer Res. 2008;8:3001–9.

    Article  CAS  Google Scholar 

  30. Sathe A, Koshy N, Schmid SC, et al. CDK4/6-inhibition controls proliferation of bladder cancer and transcription of RB1. J Urol. 2015;15:04685–6.

    Google Scholar 

  31. Rihani A, Vandesompele J, Speleman F, et al. Inhibition of CDK4/6 as a novel therapeutic option for neuroblastoma. Cancer Cell Int. 2015;15:76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, D., Yang, W. et al. Overexpression of the transcription factor FOXP3 in lung adenocarcinoma sustains malignant character by promoting G1/S transition gene CCND1. Tumor Biol. 37, 7395–7404 (2016). https://doi.org/10.1007/s13277-015-4616-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4616-3

Keywords

Navigation