Skip to main content

Advertisement

Log in

Foxp3 expression in melanoma cells as a possible mechanism of resistance to immune destruction

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The forkhead transcription factor Foxp3 is the only definitive marker of CD4+CD25+ regulatory T cells (Tregs) and has been identified as a key regulator in the development and function of Tregs. Foxp3 expression has been reported in a variety of solid tumors, including melanoma. In this study, we validated Foxp3 expression in both tumor-infiltrating Tregs and melanoma cells by performing immunohistochemical analysis of human melanoma tissue sections. Further, we assessed Foxp3 expression in melanoma cell lines by performing flow cytometry, confocal microscopic analysis, reverse transcription-polymerase chain reaction (RT–PCR), and Western blotting. Inhibition of Foxp3 expression in melanoma cells using small interfering RNA (siRNA) resulted in downregulation of B7-H1 and transforming growth factor (TGF)-β expression; in contrast, Foxp3 overexpression resulted in the upregulation of the expression of these proteins. Coculture of Foxp3-expressing melanoma cells with naive CD4+CD25 T cells resulted in strong inhibition of T-cell proliferation. This antiproliferative effect was partially abrogated by specific inhibition of Foxp3 expression and was effectively enhanced by overexpression of Foxp3. We observed an attenuated antiproliferative effect even when melanoma cells and T cells in the coculture were separated using Transwell inserts. These findings indicated that melanoma cells could have Foxp3-dependent Treg-like suppressive effects on T cells and suggested that the mimicking of Treg function by melanoma cells may represent a possible mechanism of tumor resistance to immune destruction in the melanoma tumor microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sakaguchi S (2004) Naturally arising CD4 + regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22:531–562

    Article  PubMed  CAS  Google Scholar 

  2. Zheng Y, Rudensky AY (2007) Foxp3 in control of the regulatory T cell lineage. Nat Immunol 8:457–462

    Article  PubMed  CAS  Google Scholar 

  3. Sakaguchi S (2005) Naturally arising Foxp3-expressing CD25 + CD4 + regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6:345–352

    Article  PubMed  CAS  Google Scholar 

  4. Xu D, Liu H, Komai-Koma M, Campbell C, McSharry C, Alexander J, Liew FY (2003) CD4 + CD25 + regulatory T cells suppress differentiation and functions of Th1 and Th2 cells. Leishmania major infection, and colitis in mice. J Immunol 170:394–399

    PubMed  CAS  Google Scholar 

  5. Suvas S, Kumaraguru U, Pack CD, Lee S, Rouse BT (2003) CD4 + CD25 + T cells regulate virus-specific primary and memory CD8 + T cell responses. J Exp Med 198:889–901

    Article  PubMed  CAS  Google Scholar 

  6. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949

    Google Scholar 

  7. Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6:295–307

    Article  PubMed  CAS  Google Scholar 

  8. Beyer M, Schultze JL (2006) Regulatory T cells in cancer. Blood 108:804–811

    Article  PubMed  CAS  Google Scholar 

  9. Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, Yancey D, Zhang A, Dahm P, Chao N, Gilboa E, Vieweg J (2005) Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 115:3623–3633

    Article  PubMed  CAS  Google Scholar 

  10. Mourmouras V, Fimiani M, Rubegni P, Epistolato MC, Malagnino V, Cardone C, Cosci E, Nisi MC, Miracco C (2007) Evaluation of tumour-infiltrating CD4 + CD25 + FOXP3 + regulatory T cells in human cutaneous benign and atypical naevi, melanomas and melanoma metastases. Br J Dermatol 157:531–539

    Article  PubMed  CAS  Google Scholar 

  11. Viguier M, Lemaitre F, Verola O, Cho MS, Gorochov G, Dubertret L, Bachelez H, Kourilsky P, Ferradini L (2004) Foxp3 expressing CD4 + CD25(high) regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells. J Immunol 173:1444–1453

    PubMed  CAS  Google Scholar 

  12. Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY (2005) Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22:329–341

    Article  PubMed  CAS  Google Scholar 

  13. Chatila TA (2008) Molecular mechanisms of regulatory T-cell development. Chem Immunol Allergy 94:16–28

    Article  PubMed  CAS  Google Scholar 

  14. Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, Wilkinson JE, Galas D, Ziegler SF, Ramsdell F (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27:68–73

    Article  PubMed  CAS  Google Scholar 

  15. Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, Kelly TE, Saulsbury FT, Chance PF, Ochs HD (2001) The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27:20–21

    Article  PubMed  CAS  Google Scholar 

  16. Yagi H, Nomura T, Nakamura K, Yamazaki S, Kitawaki T, Hori S, Maeda M, Onodera M, Uchiyama T, Fujii S, Sakaguchi S (2004) Crucial role of FOXP3 in the development and function of human CD25 + CD4 + regulatory T cells. Int Immunol 16:1643–1656

    Article  PubMed  CAS  Google Scholar 

  17. Allan SE, Passerini L, Bacchetta R, Crellin N, Dai M, Orban PC, Ziegler SF, Roncarolo MG, Levings MK (2005) The role of 2 FOXP3 isoforms in the generation of human CD4 + Tregs. J Clin Invest 115:3276–3284

    Article  PubMed  CAS  Google Scholar 

  18. La Porta CA (2009) Mechanism of drug sensitivity and resistance in melanoma. Curr Cancer Drug Targets 9:391–397

    Article  PubMed  CAS  Google Scholar 

  19. Alexandrescu DT, Ichim TE, Riordan NH, Marincola FM, Di Nardo A, Kabigting FD, Dasanu CA (2010) Immunotherapy for melanoma: current status and perspectives. J Immunother 33:570–590

    Article  PubMed  CAS  Google Scholar 

  20. Korn EL, Liu PY, Lee SJ, Chapman JA, Niedzwiecki D, Suman VJ, Moon J, Sondak VK, Atkins MB, Eisenhauer EA, Parulekar W, Markovic SN, Saxman S, Kirkwood JM (2008) Meta-analysis of phase II cooperative group trials in metastatic stage IV melanoma to determine progression-free and overall survival benchmarks for future phase II trials. J Clin Oncol 26:527–534

    Article  PubMed  Google Scholar 

  21. Gajewski TF (2006) Identifying and overcoming immune resistance mechanisms in the melanoma tumor microenvironment. Clin Cancer Res 12:2326s–2330s

    Article  PubMed  CAS  Google Scholar 

  22. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, Lennon VA, Celis E, Chen L (2002) Tumor-associated B7–H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800

    PubMed  CAS  Google Scholar 

  23. Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5:263–274

    Article  PubMed  CAS  Google Scholar 

  24. Hinz S, Pagerols-Raluy L, Oberg HH, Ammerpohl O, Grussel S, Sipos B, Grutzmann R, Pilarsky C, Ungefroren H, Saeger HD, Kloppel G, Kabelitz D, Kalthoff H (2007) Foxp3 expression in pancreatic carcinoma cells as a novel mechanism of immune evasion in cancer. Cancer Res 67:8344–8350

    Article  PubMed  CAS  Google Scholar 

  25. Ebert LM, Tan BS, Browning J, Svobodova S, Russell SE, Kirkpatrick N, Gedye C, Moss D, Ng SP, MacGregor D, Davis ID, Cebon J, Chen W (2008) The regulatory T cell-associated transcription factor FoxP3 is expressed by tumor cells. Cancer Res 68:3001–3009

    Article  PubMed  CAS  Google Scholar 

  26. Karanikas V, Speletas M, Zamanakou M, Kalala F, Loules G, Kerenidi T, Barda AK, Gourgoulianis KI, Germenis AE (2008) Foxp3 expression in human cancer cells. J Transl Med 6:19

    Article  PubMed  Google Scholar 

  27. Chen C, Rowell EA, Thomas RM, Hancock WW, Wells AD (2006) Transcriptional regulation by Foxp3 is associated with direct promoter occupancy and modulation of histone acetylation. J Biol Chem 281:36828–36834

    Article  PubMed  CAS  Google Scholar 

  28. Allan SE, Crome SQ, Crellin NK, Passerini L, Steiner TS, Bacchetta R, Roncarolo MG, Levings MK (2007) Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int Immunol 19:345–354

    Article  PubMed  CAS  Google Scholar 

  29. Baron U, Floess S, Wieczorek G, Baumann K, Grutzkau A, Dong J, Thiel A, Boeld TJ, Hoffmann P, Edinger M, Turbachova I, Hamann A, Olek S, Huehn J (2007) DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3(+) conventional T cells. Eur J Immunol 37:2378–2389

    Article  PubMed  CAS  Google Scholar 

  30. De Smet C, De Backer O, Faraoni I, Lurquin C, Brasseur F, Boon T (1996) The activation of human gene MAGE-1 in tumor cells is correlated with genome-wide demethylation. Proc Natl Acad Sci U S A 93:7149–7153

    Article  PubMed  Google Scholar 

  31. Gavin MA, Rasmussen JP, Fontenot JD, Vasta V, Manganiello VC, Beavo JA, Rudensky AY (2007) Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445:771–775

    Article  PubMed  CAS  Google Scholar 

  32. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC, Horton HF, Fouser L, Carter L, Ling V, Bowman MR, Carreno BM, Collins M, Wood CR, Honjo T (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192:1027–1034

    Article  PubMed  CAS  Google Scholar 

  33. Krasagakis K, Kruger-Krasagakes S, Fimmel S, Eberle J, Tholke D (1999) m. von der Ohe, U. Mansmann, C.E. Orfanos, Desensitization of melanoma cells to autocrine TGF-beta isoforms, J Cell Physiol 178:179–187

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the colleagues from the Department of Pathology, Xijing Hospital of Fourth Military Medical University for their excellent technical support.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianwen Gao.

Additional information

The authors J. Niu and C. Jiang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niu, J., Jiang, C., Li, C. et al. Foxp3 expression in melanoma cells as a possible mechanism of resistance to immune destruction. Cancer Immunol Immunother 60, 1109–1118 (2011). https://doi.org/10.1007/s00262-011-1025-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-011-1025-3

Keywords

Navigation