Skip to main content

Advertisement

Log in

Crucial microRNAs and genes of human primary breast cancer explored by microRNA-mRNA integrated analysis

  • Research Article
  • Published:
Tumor Biology

Abstract

This study aimed to screen potential microRNAs (miRNAs) and genes related to human primary breast cancer. The gene and miRNA expression profile data of GSE19783 was obtained from Gene Expression Omnibus. The matched messenger RNA (mRNA) and miRNA expression profiles of 100 human primary breast cancer samples were chosen for further analysis. The miRNA-gene regulatory modules were screened via iterative multiplicative updating algorithm. The potential functions of genes in modules were predicted by functional and pathway enrichment analysis; meanwhile, the potential functions of miRNAs were predicted by functional enrichment analysis. Furthermore, miRNA-miRNA functional synergistic network and miRNA-miRNA co-regulatory network were constructed. Totally, 16 miRNA-gene modules were screened, containing 222 miRNA-gene interactions. The genes in these modules were mainly related to breast cancer. Genes in module 6 (e.g., SFRP1) were enriched in cell junction assembly; genes in module 8 and 12 (e.g., ESR1 and ERBB4) were significantly implicated in mammary gland alveolus and lobule development. Meanwhile, genes in module 12 (e.g., ERBB4) were enriched in the pathway of endocytosis. Besides, several miRNAs (e.g., miR-375) were enriched in inflammatory cell apoptotic process; some other miRNAs (e.g., miR-139-5p and miR-9) were enriched in response to vitamin D. Additionally, miR-139-5p with several other miRNAs (e.g., miR-9) co-regulated SFRP1; miR-375, miR-592, and miR-135a co-regulated ESR1 and ERBB4. Some miRNAs (e.g., miR-139-5p and miR-9) and their target gene SFRP1, as well as several other miRNAs (e.g., miR-375, miR-592, and miR-135a) and their target genes (e.g., ESR1 and ERBB4), might be crucial in the pathogenesis of primary breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64(1):9–29.

    Article  PubMed  Google Scholar 

  2. Sieuwerts AM, Mostert B, Bolt-de Vries J, Peeters D, de Jongh FE, Stouthard JM, et al. mRNA and microRNA expression profiles in circulating tumor cells and primary tumors of metastatic breast cancer patients. Clin Cancer Res. 2011;17(11):3600–18.

    Article  CAS  PubMed  Google Scholar 

  3. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410(6824):50–6.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang Z, Ni C, Chen W, Wu P, Wang Z, Yin J, et al. Expression of CXCR4 and breast cancer prognosis: a systematic review and meta-analysis. BMC Cancer. 2014;14(49):1471–2407.

    Google Scholar 

  5. Hassan S, Buchanan M, Jahan K, Aguilar-Mahecha A, Gaboury L, Muller WJ, et al. CXCR4 peptide antagonist inhibits primary breast tumor growth, metastasis and enhances the efficacy of anti‐VEGF treatment or docetaxel in a transgenic mouse model. Int J Cancer. 2011;129(1):225–32.

    Article  CAS  PubMed  Google Scholar 

  6. Niikura N, Liu J, Hayashi N, Mittendorf EA, Gong Y, Palla SL, et al. Loss of human epidermal growth factor receptor 2 (HER2) expression in metastatic sites of HER2-overexpressing primary breast tumors. J Clin Oncol. 2012;30(6):593–9.

    Article  PubMed  Google Scholar 

  7. Kasimir-Bauer S, Hoffmann O, Wallwiener D, Kimmig R, Fehm T. Expression of stem cell and epithelial-mesenchymal transition markers in primary breast cancer patients with circulating tumor cells. Breast Cancer Res. 2012;14(1):R15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sanz-Pamplona R, Aragüés R, Driouch K, Martín B, Oliva B, Gil M, et al. Expression of endoplasmic reticulum stress proteins is a candidate marker of brain metastasis in both ErbB-2+ and ErbB-2 primary breast tumors. Am J Pathol. 2011;179(2):564–79.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gonzalez-Angulo AM, Ferrer-Lozano J, Stemke-Hale K, Sahin A, Liu S, Barrera JA, et al. PI3K pathway mutations and PTEN levels in primary and metastatic breast cancer. Mol Cancer Ther. 2011;10(6):1093–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Santini D, Schiavon G, Vincenzi B, Gaeta L, Pantano F, Russo A, et al. Receptor activator of NF-kB (RANK) expression in primary tumors associates with bone metastasis occurrence in breast cancer patients. PLoS One. 2011;6(4):e19234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Iorio MV, Ferracin M, Liu C-G, Veronese A, Spizzo R, Sabbioni S, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65(16):7065–70.

    Article  CAS  PubMed  Google Scholar 

  12. Lehmann U, Streichert T, Otto B, Albat C, Hasemeier B, Christgen H, et al. Identification of differentially expressed microRNAs in human male breast cancer. BMC Cancer. 2010;10(1):109.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jiang S, Zhang H-W, Lu M-H, He X-H, Li Y, Gu H, et al. MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res. 2010;70(8):3119–27.

    Article  CAS  PubMed  Google Scholar 

  14. Enerly E, Steinfeld I, Kleivi K, Leivonen SK, Aure MR, Russnes HG, et al. miRNA-mRNA integrated analysis reveals roles for miRNAs in primary breast tumors. PLoS One. 2011;6(2):e16915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang S, Li Q, Liu J, Zhou XJ. A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules. Bioinformatics. 2011;27(13):i401–9.

  16. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4(2):249–64.

    Article  PubMed  Google Scholar 

  17. Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3(1). doi:10.2202/1544-6115.1027.

  18. Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T. miRecords: an integrated resource for microRNA–target interactions. Nucleic Acids Res. 2009;37:D105–10.

    Article  CAS  PubMed  Google Scholar 

  19. Dweep H, Sticht C, Pandey P, Gretz N. miRWalk–database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform. 2011;44(5):839–47.

    Article  CAS  PubMed  Google Scholar 

  20. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, et al. STRING v9. 1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013;41:D808–15.

    Article  CAS  PubMed  Google Scholar 

  21. Berry MW, Browne M, Langville AN, Pauca VP, Plemmons RJ. Algorithms and applications for approximate nonnegative matrix factorization. Comput Stat Data Anal. 2007;52(1):155–73.

    Article  Google Scholar 

  22. Davis AP, Murphy CG, Johnson R, Lay JM, Lennon-Hopkins K, Saraceni-Richards C et al. The comparative toxicogenomics database: update 2013. Nucleic Acids Res. 2013;41:D1104–14.

  23. Matys V, Fricke E, Geffers R, Gößling E, Haubrock M, Hehl R, et al. TRANSFAC®: transcriptional regulation, from patterns to profiles. Nucleic Acids Res. 2003;31(1):374–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen JS, Hung WS, Chan HH, Tsai SJ, Sun HS. In silico identification of oncogenic potential of fyn-related kinase in hepatocellular carcinoma. Bioinformatics. 2013;29(4):420–7.

    Article  PubMed  Google Scholar 

  25. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene Ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Altermann E, Klaenhammer TR. PathwayVoyager: pathway mapping using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. BMC Genomics. 2005;6(1):60.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kohl M, Wiese S, Warscheid B. Cytoscape: software for visualization and analysis of biological networks. In: Hamacher M, Eisenacher M, Stephan C, editors. Data Mining in Proteomics, vol 696. New York: Springer; 2011. p. 291–303.

  28. Joshi PA, Khokha R. The mammary stem cell conundrum: is it unipotent or multipotent? Breast Cancer Res. 2012;14(2):305.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Veeck J, Niederacher D, An H, Klopocki E, Wiesmann F, Betz B, et al. Aberrant methylation of the Wnt antagonist SFRP1 in breast cancer is associated with unfavourable prognosis. Oncogene. 2006;25(24):3479–88.

    Article  CAS  PubMed  Google Scholar 

  30. Huth L, Rose M, Kloubert V, Winkens W, Schlensog M, Hartmann A, et al. BDNF is associated with SFRP1 expression in luminal and basal-like breast cancer cell lines and primary breast cancer tissues: a novel role in tumor suppression? PLoS One. 2014;9(7):e102558.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hoevel T, Macek R, Swisshelm K, Kubbies M. Reexpression of the TJ protein CLDN1 induces apoptosis in breast tumor spheroids. Int J Cancer. 2004;108(3):374–83.

    Article  CAS  PubMed  Google Scholar 

  32. Sauer T, Pedersen M, Ebeltoft K, Naess O. Reduced expression of Claudin‐7 in fine needle aspirates from breast carcinomas correlate with grading and metastatic disease. Cytopathology. 2005;16(4):193–8.

    Article  CAS  PubMed  Google Scholar 

  33. Colston K, Berger U, Coombes RC. Possible role for vitamin D in controlling breast cancer cell proliferation. Lancet. 1989;333(8631):188–91.

    Article  Google Scholar 

  34. Dalessandri KM, Miike R, Wiencke JK, Farren G, Pugh TW, Manjeshwar S, et al. Vitamin D receptor polymorphisms and breast cancer risk in a high-incidence population: a pilot study. J Am Coll Surg. 2012;215(5):652–7.

    Article  PubMed  Google Scholar 

  35. Krishnan K, Steptoe AL, Martin HC, Pattabiraman DR, Nones K, Waddell N, et al. miR-139-5p is a regulator of metastatic pathways in breast cancer. RNA. 2013;19(12):1767–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou X, Marian C, Makambi KH, Kosti O, Kallakury BV, Loffredo CA, et al. MicroRNA-9 as potential biomarker for breast cancer local recurrence and tumor estrogen receptor status. PLoS One. 2012;7(6):e39011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Croce CM. Oncogenes and cancer. N Engl J Med. 2008;358(5):502–11.

    Article  CAS  PubMed  Google Scholar 

  38. Holst F, Stahl PR, Ruiz C, Hellwinkel O, Jehan Z, Wendland M, et al. Estrogen receptor alpha (ESR1) gene amplification is frequent in breast cancer. Nat Genet. 2007;39(5):655–60.

    Article  CAS  PubMed  Google Scholar 

  39. Shao J, Li S, Crowder R, Kitchens R, Johnson S, Goncalves R et al. Abstract S3-05: Patient-derived xenograft study reveals endocrine therapy resistance of ER+ breast cancer caused by distinct ESR1 gene aberrations. Cancer Res. 2013;73(24 Supplement):S3-05-S3-.

  40. Guler G, Iliopoulos D, Guler N, Himmetoglu C, Hayran M, Huebner K. Wwox and Ap2γ expression levels predict tamoxifen response. Clin Cancer Res. 2007;13(20):6115–21.

    Article  CAS  PubMed  Google Scholar 

  41. Kurppa KJ, Rokavec M, Sundvall M, Kellokumpu-Lehtinen P-L, Joensuu H, Brauch H, et al. ERBB4 promoter polymorphism is associated with poor distant disease-free survival in high-risk early breast cancer. PLoS One. 2014;9(7):e102388.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. de Souza Rocha Simonini P, Breiling A, Gupta N, Malekpour M, Youns M, Omranipour R, et al. Epigenetically deregulated microRNA-375 is involved in a positive feedback loop with estrogen receptor alpha in breast cancer cells. Cancer Res. 2010;70(22):9175–84.

    Article  PubMed  Google Scholar 

  44. Romero-Cordoba S, Rodriguez-Cuevas S, Rebollar-Vega R, Quintanar-Jurado V, Maffuz-Aziz A, Jimenez-Sanchez G, et al. Identification and pathway analysis of microRNAs with no previous involvement in breast cancer. PLoS One. 2012;7(3):e31904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen Y, Zhang J, Wang H, Zhao J, Xu C, Du Y, et al. miRNA-135a promotes breast cancer cell migration and invasion by targeting HOXA10. BMC Cancer. 2012;12(1):111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by Hubei Provincial Natural Science Foundation of China (No. 2014CFB366).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Xing, Y., Liang, C. et al. Crucial microRNAs and genes of human primary breast cancer explored by microRNA-mRNA integrated analysis. Tumor Biol. 36, 5571–5579 (2015). https://doi.org/10.1007/s13277-015-3227-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3227-3

Keywords

Navigation