Advertisement

Tumor Biology

, Volume 36, Issue 3, pp 1963–1971 | Cite as

Methylation of miR124a-1, miR124a-2, and miR124a-3 in Hodgkin lymphoma

  • M. Ben Dhiab
  • S. Ziadi
  • F. Ksiaa
  • T. Louhichi
  • R. Ben Gacem
  • A. Ben Zineb
  • K. Amara
  • M. Hachana
  • Mounir Trimeche
Research Article

Abstract

Deregulation of the microRNA miR124a by DNA methylation has been implicated in various malignancies, but no study reported its methylation status in Hodgkin lymphoma (HL). We evaluated the methylation of the three loci encoding for miR124a using methylation-specific PCR in 64 HL patients and 15 reactive lymph nodes obtained from patients with nonmalignant diseases. Results were correlated with clinicopathological parameters. Methylation rates of miR124a-1, miR124a-2, and miR124a-3 in HL were 17, 50, and 28 %, respectively. None of the nontumoral samples showed aberrant hypermethylation in any of the miR tested. In HL cases, we found that miR124a-1 methylation correlates with high-risk International Prognostic Score (IPS) (score >3, p = 0.04) and that miR124a-2 methylation was more frequent in children (82.3 %, p = 0.006) and men (63.9 %, p = 0.01). Methylation of miR124a-3 was associated with advanced Ann-Arbor stages (p = 0.007). The survival analysis showed that methylation of at least one of the miR124a genes was associated with shortened event-free survival in univariate (p = 0.03) and multivariate (p = 0.02) analyses. These results suggest that miR124a methylation is associated with aggressive HL disease and may be an interesting factor for predicting treatment response.

Keywords

Hodgkin lymphoma MicroRNA Methylation 

Notes

Acknowledgments

This work was supported by the “Ministry of Higher Education, Scientific Research and Technology” and the “Ministry of Health” of Tunisia.

Conflicts of interest

None

References

  1. 1.
    Swerdlow SH, Campo E, Harris NL, et al. WHO classification of tumors: pathology and genetics of tumors of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 321–34.Google Scholar
  2. 2.
    McKinney PA, Alexander FE, Rickett TJ, Williams J, Cartwright RA. A specialist leukaemia/lymphoma registry in the UK. Part 1: incidence and geographical distribution of Hodgkin’s disease. Leukaemia Research Fund Data Collection Study Group. Br J Cancer. 1989;60:942–7.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Glaser SL, Lin RJ, Stewart SL, et al. Epstein-Barr virus-associated Hodgkin’s disease: epidemiologic characteristics in international data. Int J Cancer. 1997;70:375–82.CrossRefPubMedGoogle Scholar
  4. 4.
    Quddus F, Armitage JO. Salvage therapy for Hodgkin’s lymphoma. Cancer J. 2009;15:161–3.CrossRefPubMedGoogle Scholar
  5. 5.
    Chim CS, Fung TK, Wong KF, Lau JS, Liang R. Frequent DAP kinase but not p14 or Apaf-1 hypermethylation in B-cell chronic lymphocytic leukemia. J Hum Genet. 2006;51:832–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Chim CS, Fung TK, Cheung WC, Liang R, Kwong YL. SOCS1 and SHP1 hypermethylation in multiple myeloma: implications for epigenetic activation of the Jak/STAT pathway. Blood. 2004;103:4630–5.CrossRefPubMedGoogle Scholar
  7. 7.
    Chim CS, Fung TK, Liang R. Disruption of INK4/CDK/Rb cell cycle pathway by gene hypermethylation in multiple myeloma and MGUS. Leukemia. 2003;17:2533–5.CrossRefPubMedGoogle Scholar
  8. 8.
    Chim CS, Kwong YL, Liang R. Gene hypermethylation in multiple myeloma: lessons from a cancer pathway approach. Clin Lymphoma Myeloma. 2008;8:331–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Chim CS, Liang R, Fung TK, Choi CL, Kwong YL. Epigenetic dysregulation of the death-associated protein kinase/p14/HDM2/p53/Apaf-1 apoptosis pathway in multiple myeloma. J Clin Pathol. 2007;60:664–9.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chim CS, Liang R, Fung TK, Kwong YL. Infrequent epigenetic dysregulation of CIP/KIP family of cyclin-dependent kinase inhibitors in multiple myeloma. Leukemia. 2005;19:2352–5.CrossRefPubMedGoogle Scholar
  11. 11.
    Chim CS, Liang R, Leung MH, Kwong YL. Aberrant gene methylation implicated in the progression of monoclonal gammopathy of undetermined significance to multiple myeloma. J Clin Pathol. 2007;60:104–6.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chim CS, Liang R, Leung MH, Yip SF, Kwong YL. Aberrant gene promoter methylation marking disease progression in multiple myeloma. Leukemia. 2006;20:1190–2.CrossRefPubMedGoogle Scholar
  13. 13.
    Chim CS, Pang R, Fung TK, Choi CL, Liang R. Epigenetic deregulation of Wnt signaling pathway in multiple myeloma. Leukemia. 2007;21:2527–36.CrossRefPubMedGoogle Scholar
  14. 14.
    He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522–31.CrossRefPubMedGoogle Scholar
  15. 15.
    Miska EA. How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev. 2005;5:563–8.CrossRefGoogle Scholar
  16. 16.
    Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.CrossRefPubMedGoogle Scholar
  17. 17.
    Chen CZ. MicroRNAs as oncogenes and tumor suppressors. N Engl J Med. 2005;353:1768–71.CrossRefPubMedGoogle Scholar
  18. 18.
    Silber J, Lim DA, Petritsch C, et al. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med. 2008;6:14–31.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ando T, Yoshida T, Enomoto S, et al. DNA methylation of microRNA genes in gastric mucosae of gastric cancer patients: its possible involvement in the formation of epigenetic field defect. Int J Cancer. 2009;124:2367–74.CrossRefPubMedGoogle Scholar
  20. 20.
    Wilting SM, van Boerdonk RA, Henken FE, et al. Methylation-mediated silencing and tumour suppressive function of hsa-miR-124 in cervical cancer. Mol Cancer. 2010;9:167–81.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Furuta M, Kozaki KI, Tanaka S, Arii S, Imoto I, Inazawa J. miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis. 2010;31:766–76.CrossRefPubMedGoogle Scholar
  22. 22.
    Ben Gacem R, Ben Abdelkarim O, Ziadi S, Ben Dhiab M, Trimeche M. Methylation of miR-124a-1, miR-124a-2, and miR-124a-3 genes correlates with aggressive and advanced breast cancer disease. Tumour Biol. 2014;35:4047–56.CrossRefPubMedGoogle Scholar
  23. 23.
    Agirre X, Vilas-Zornoza A, Jiménez-Velasco A, et al. Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia. Cancer Res. 2009;69:4443–53.CrossRefPubMedGoogle Scholar
  24. 24.
    Wong KY, So CC, Loong F, et al. Epigenetic inactivation of the miR-124-1 in haematological malignancies. PLoS One. 2011;6:e19027.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Roman-Gomez J, Agirre X, Jiménez-Velasco A, et al. Epigenetic regulation of MicroRNAs in acute lymphoblastic leukemia. J Clin Oncol. 2009;27:1316–22.CrossRefPubMedGoogle Scholar
  26. 26.
    Lujambio A, Ropero S, Ballestar E, et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res. 2007;67:1424–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Chen X, He D, Dong XD, et al. MicroRNA-124a is epigenetically regulated and acts as a tumor suppressor by controlling multiple targets in uveal melanoma. Invest Ophthalmol Vis Sci. 2013;54:2248–56.CrossRefPubMedGoogle Scholar
  28. 28.
    Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A. 1996;93:9821–6.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Amara K, Trimeche M, Ziadi S, et al. Presence of simian virus 40 DNA sequences in diffuse large B-cell lymphomas in Tunisia correlates with aberrant promoter hypermethylation of multiple tumor suppressor genes. Int J Cancer. 2007;121:2693–702.CrossRefPubMedGoogle Scholar
  30. 30.
    Singal R, Fredinand L, Reis IM, Schlesselman JJ. Methylation of multiple genes in prostate cancer and the relation with clinicopathological features of disease. Oncol Rep. 2004;12:631–7.PubMedGoogle Scholar
  31. 31.
    Patel A, Groopman JD, Umar A. DNA methylation as a cancer-specific biomarker: from molecules to populations. Ann N Y Acad Sci. 2003;983:286–97.CrossRefPubMedGoogle Scholar
  32. 32.
    Navarro A, Gaya A, Martinez A, et al. MicroRNA expression profiling in classic Hodgkin lymphoma. Blood. 2008;111:2825–32.CrossRefPubMedGoogle Scholar
  33. 33.
    Tsai CN, Tsai CL, Tse KP, Chang HY, Chang YS. The Epstein-Barr virus oncogene product, latent membrane protein 1, induces the down-regulation of E-cadherin gene expression via activation of DNA methyltransferases. Proc Natl Acad Sci U S A. 2002;99:10084–9.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Tsai CL, Li HP, Lu YJ, et al. Activation of DNA methyltransferase 1 by EBV LMP1 involves c-Jun NH2-terminal kinase signaling. Cancer Res. 2006;66:11668–76.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • M. Ben Dhiab
    • 1
  • S. Ziadi
    • 1
  • F. Ksiaa
    • 1
  • T. Louhichi
    • 1
  • R. Ben Gacem
    • 1
  • A. Ben Zineb
    • 1
  • K. Amara
    • 1
  • M. Hachana
    • 1
  • Mounir Trimeche
    • 1
  1. 1.Department of PathologyFarhat-Hached Hospital of SousseSousseTunisia

Personalised recommendations