Skip to main content

Advertisement

Log in

Correlation of CLPTM1L polymorphisms with lung cancer susceptibility and response to cisplatin-based chemotherapy in a Chinese Han population

  • Research Article
  • Published:
Tumor Biology

Abstract

The implication of genetic factors in predisposition to cancer is a recognized fact. The Cleft lip and palate transmembrane 1-like (CLPTM1L) gene resides in a locus in the chromosome 5p15.33 region that is associated with lung cancer susceptibility and has a role in carcinogenesis. We conducted a case-control study in a Chinese population of 309 pathologically confirmed lung cancer patients and 310 controls to investigate the effect of variant genotypes within the CLPTM1L locus on susceptibility to lung cancer and sensitivity to cisplatin-based chemotherapy. We genotyped nine single nucleotide polymorphisms (SNPs) within the CLPTM1L locus and examined their correlation with lung cancer risk and treatment response using χ 2 and unconditional logistic regression analysis. We identified rs451360 as a novel SNP associated with lung cancer risk in the Chinese Han population. The “T” allele of rs451360 was associated with decreased risk of lung cancer (p = 0.007, odd ratio (OR) = 0.59, 95 % confidence interval (CI): 0.40–0.87). Significant multiplicative interactions were observed between gender and polymorphisms of rs402710, the “T/T” genotype of which was associated with decreased lung cancer risk in male patients (p = 0.016, OR = 0.35, 95 % CI: 0.17–0.73). CLPTM1L polymorphisms did not affect the tumor sensitivity to cisplatin combination chemotherapy in our study patients. The results of the present study suggest a potential association between CLPTM1L variants and lung cancer risk in the Chinese Han populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith RA, Cokkinides V, Brooks D, Saslow D, Shah M, Brawley OW. Cancer screening in the United States, 2011: a review of current American Cancer Society guidelines and issues in cancer screening. CA Cancer J Clin. 2011;61:8–30.

    Article  Google Scholar 

  2. Pirozynski M. 100 years of lung cancer. Respir Med. 2006;100:2073–84.

    Article  Google Scholar 

  3. Chen WQ, Zeng HM, Zheng RS, Zhang SW, He J. Cancer incidence and mortality in China. Chin J Cancer Res. 2007;24:1–8.

    Article  Google Scholar 

  4. Chen WQ, Zhang SW, Zou XN. Evaluation on the incidence, mortality and tendency of lung cancer in China. Thorac Cancer. 2010;1:35–40.

    Article  Google Scholar 

  5. Shields PG. Molecular epidemiology of smoking and lung cancer. Oncogene. 2002;21:6870–6.

    Article  CAS  Google Scholar 

  6. Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, et al. Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000;343:78–85.

    Article  CAS  Google Scholar 

  7. D’Addario G, Pintilie M, Leighl NB, Feld R, Cerny T, Shepherd FA. Platinum-based versus non-platinum-based chemotherapy in advanced non-small-cell lung cancer: a meta-analysis of the published literature. J Clin Oncol. 2005;23:2926–36.

    Article  Google Scholar 

  8. Chang A. Chemotherapy, chemoresistance and the changing treatment landscape for NSCLC. Lung Cancer. 2011;71:3–10.

    Article  Google Scholar 

  9. Seng KC, Seng CK. The success of the genome-wide association approach: a brief story of a long struggle. Eur J Hum Genet. 2008;16:554–64.

    Article  CAS  Google Scholar 

  10. McKay JD, Hung RJ, Gaborieau V, Boffetta P, Chabrier A, Byrnes G, et al. Lung cancer susceptibility locus at 5p15.33. Nat Genet. 2008;40:1404–6.

    Article  CAS  Google Scholar 

  11. Haiman CA, Chen GK, Vachon CM, Canzian F, Dunning A, Millikan RC, et al. A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor-negative breast cancer. Nat Genet. 2011;43:1210–4.

    Article  CAS  Google Scholar 

  12. Petersen GM, Amundadottir L, Fuchs CS, Kraft P, Stolzenberg-Solomon RZ, Jacobs KB, et al. A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nat Genet. 2010;42:224–8.

    Article  CAS  Google Scholar 

  13. Rafnar T, Sulem P, Stacey SN, Geller F, Gudmundsson J, Sigurdsson A, et al. Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. Nat Genet. 2009;41:221–7.

    Article  CAS  Google Scholar 

  14. Yamamoto K, Okamoto A, Isonishi S, Ochiai K, Ohtake Y. A novel gene, CRR9, which was up-regulated in CDDP-resistant ovarian tumor cell line, was associated with apoptosis. Biochem Biophys Res Commun. 2001;280:1148–54.

    Article  CAS  Google Scholar 

  15. Ni Z, Tao K, Chen G, Chen Q, Tang J, Luo X, et al. CLPTM1L is overexpressed in lung cancer and associated with apoptosis. PLoS ONE. 2012;7:e52598.

    Article  CAS  Google Scholar 

  16. James MA, Wen W, Wang Y, Byers LA, Heymach JV, Coombes KR, et al. Functional characterization of CLPTM1L as a lung cancer risk candidate gene in the 5p15.33 locus. PLoS ONE. 2012;7:e36116.

    Article  CAS  Google Scholar 

  17. Pande M, Spitz MR, Wu X, Gorlov IP, Chen WV, Amos CI. Novel genetic variants in the chromosome 5p15.33 region associate with lung cancer risk. Carcinogenesis. 2011;32:1493–9.

    Article  CAS  Google Scholar 

  18. Wang Y, Broderick P, Webb E, Wu X, Vijayakrishnan J, Matakidou A, et al. Common 5p15.33 and 6p21.33 variants influence lung cancer risk. Nat Genet. 2008;40:1407–9.

    Article  CAS  Google Scholar 

  19. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst. 2000;92:205–16.

    Article  CAS  Google Scholar 

  20. Ramirez JL, Rosell R, Taron M, Sanchez-Ronco M, Alberola V, de Las PR, et al. 14-3-3sigma methylation in pretreatment serum circulating DNA of cisplatin-plus-gemcitabine-treated advanced non-small-cell lung cancer patients predicts survival: the Spanish lung cancer group. J Clin Oncol Off J Am Soc Clin Oncol. 2005;23:9105–12.

    Article  CAS  Google Scholar 

  21. Law MH, Montgomery GW, Brown KM, Martin NG, Mann GJ, Hayward NK, et al. Meta-analysis combining new and existing data sets confirms that the TERT-CLPTM1L locus influences melanoma risk. J Investig Dermatol. 2012;132:485–7.

    Article  CAS  Google Scholar 

  22. Landi MT, Chatterjee N, Yu K, Goldin LR, Goldstein AM, Rotunno M, et al. A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma. Am J Hum Genet. 2009;85:679–91.

    Article  CAS  Google Scholar 

  23. Wang Y, Broderick P, Matakidou A, Eisen T, Houlston RS. Role of 5p15.33 (TERT-CLPTM1L), 6p21.33 and 15q25.1 (CHRNA5-CHRNA3) variation and lung cancer risk in never-smokers. Carcinogenesis. 2010;31:234–8.

    Article  Google Scholar 

  24. Gabriel S, Ziaugra L, Tabbaa D. SNP genotyping using the Sequenom MassARRAY iPLEX platform.; Current Protocols in Human Genetics; 2009, vol 1 Chapter 2 (2009) Unit 2 12

  25. Thomas RK, Baker AC, Debiasi RM, Winckler W, Laframboise T, Lin WM, et al. High-throughput oncogene mutation profiling in human cancer. Nat Genet. 2007;39:347–51.

    Article  CAS  Google Scholar 

  26. Li S, Jin T, Zhang J, Lou H, Yang B, Li Y, et al. Polymorphisms of TREH, IL4R and CCD26 genes associated with risk of glioma. Cancer Epidemiol. 2012;36:283–7.

    Article  CAS  Google Scholar 

  27. Speedy HE, Di Bernardo MC, Sava GP, Dyer MJ, Holroyd A, Wang Y, et al. A genome-wide association study identifies multiple susceptibility loci for chronic lymphocytic leukemia. Nat Genet. 2014;46:56–60.

    Article  CAS  Google Scholar 

  28. Bland JM, Altman DG. Statistics notes. The odds ratio. BMJ. 2000;320:1468.

    Article  CAS  Google Scholar 

  29. Shi YY, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005;15:97–8.

    Article  CAS  Google Scholar 

  30. Vazquez-Mena O, Medina-Martinez I, Juarez-Torres E, Barron V, Espinosa A, Villegas-Sepulveda N, et al. Amplified genes may be overexpressed, unchanged, or downregulated in cervical cancer cell lines. PLoS ONE. 2012;7:e32667.

    Article  CAS  Google Scholar 

  31. Asakura T, Imai A, Ohkubo-Uraoka N, Kuroda M, Iidaka Y, Uchida K, et al. Relationship between expression of drug-resistance factors and drug sensitivity in normal human renal proximal tubular epithelial cells in comparison with renal cell carcinoma. Oncol Rep. 2005;14:601–7.

    CAS  PubMed  Google Scholar 

  32. Colombo J, Fachel AA, De Freitas Calmon M, Cury PM, Fukuyama EE, Tajara EH, et al. Gene expression profiling reveals molecular marker candidates of laryngeal squamous cell carcinoma. Oncol Rep. 2009;21:649–63.

    CAS  PubMed  Google Scholar 

  33. Zienolddiny S, Skaug V, Landvik NE, Ryberg D, Phillips DH, Houlston R, et al. The TERT-CLPTM1L lung cancer susceptibility variant associates with higher DNA adduct formation in the lung. Carcinogenesis. 2009;30:1368–71.

    Article  CAS  Google Scholar 

  34. Phillips DH. Smoking-related DNA and protein adducts in human tissues. Carcinogenesis. 2002;23:1979–2004.

    Article  CAS  Google Scholar 

  35. Arif JM, Dresler C, Clapper ML, Gairola CG, Srinivasan C, Lubet RA, et al. Lung DNA adducts detected in human smokers are unrelated to typical polyaromatic carcinogens. Chem Res Toxicol. 2006;19:295–9.

    Article  CAS  Google Scholar 

  36. Le Calvez F, Mukeria A, Hunt JD, Kelm O, Hung RJ, Taniere P, et al. TP53 and KRAS mutation load and types in lung cancers in relation to tobacco smoke: distinct patterns in never, former, and current smokers. Cancer Res. 2005;65:5076–83.

    Article  Google Scholar 

  37. Zhang RCQ, Lu Y. The analysis of cigarette smoking behaviors and its influencing factors among Chinese urban and rural residents. Acta Univ Med Nanjing. 2014;34:84–9.

    CAS  Google Scholar 

  38. James MA, Vikis HG, Tate E, Rymaszewski AL, You M. CRR9/CLPTM1L regulates cell survival signaling and is required for Ras transformation and lung tumorigenesis. Cancer Res. 2014;74:1116–27.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (No. 2012ZX09506001).

Conflicts of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingwei Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplement Table S1

(DOC 39 kb)

Supplement Table S2

(DOC 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Thakur, A., Gao, L. et al. Correlation of CLPTM1L polymorphisms with lung cancer susceptibility and response to cisplatin-based chemotherapy in a Chinese Han population. Tumor Biol. 35, 12075–12082 (2014). https://doi.org/10.1007/s13277-014-2508-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2508-6

Keywords

Navigation