Skip to main content

Advertisement

Log in

Therapeutic potential of siRNA and DNAzymes in cancer

  • Review
  • Published:
Tumor Biology

Abstract

Cancer is characterized by uncontrolled cell growth, invasion, and metastasis and possess threat to humans worldwide. The scientific community is facing numerous challenges despite several efforts to cure cancer. Though a number of studies were done earlier, the molecular mechanism of cancer progression is not completely understood. Currently available treatments like surgery resection, adjuvant chemotherapy, and radiotherapy are not completely effective in curing all the cancers. Recent advances in the antisense technology provide a powerful tool to investigate various cancer pathways and target them. Small interfering RNAs (siRNAs) could be effective in downregulating the cancer-associated genes, but their in vivo delivery is the main obstacle. DNA enzymes (DNAzymes) have great potential in the treatment of cancer due to high selectivity and significant catalytic efficiency. In this review, we are focusing on antisense molecules such as siRNA and DNAzymes in cancer therapeutics development. This review also describes the challenges and approaches to overcome obstacles involved in using siRNA and DNAzymes in the treatment of cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wu H, Hait WN, Yang JM. Small interfering RNA-induced suppression of MDR1 (P-glycoprotein) restores sensitivity to multidrug-resistant cancer cells. Cancer Res. 2003;63:1515–9.

    CAS  PubMed  Google Scholar 

  2. Nieth C, Priebsch A, Stege A, Lage H. Modulation of the classical multidrug resistance (MDR) phenotype by RNA interference (RNAi). FEBS Lett. 2003;545:144–50.

    Article  CAS  PubMed  Google Scholar 

  3. Fire A, Xu SQ, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–11.

    Article  CAS  PubMed  Google Scholar 

  4. Bernstein E, Caudy A, Hammond S, Hannon G. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409:363–6.

    Article  CAS  PubMed  Google Scholar 

  5. Siomi H, Siomi MC. On the road to reading the RNA-interference code. Nature. 2009;457:396–404.

    Article  CAS  PubMed  Google Scholar 

  6. Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 2000;101:25–33.

    Article  CAS  PubMed  Google Scholar 

  7. Vermeulen A, Behlen L, Reynolds A, Wolfson A, Marshall WS, Karpilow J, et al. The contributions of dsRNA structure to Dicer specificity and efficiency. RNA. 2005;11:674–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Konopka JB, Watanabe SM, Singer JW, Collins SJ, Witte ON. Cell lines and clinical isolates derived from Ph1-positive chronic myelogenous leukemia patients express c-abl proteins with a common structural alteration. Proc Natl Acad Sci U S A. 1985;82:1810–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Tsujimoto Y, Gorham J, Cossman J, Jaffe E, Croce CM. The t(14;18) chromosome translocations involved in B-cell neoplasms result from mistakes in VDJ joining. Science. 1985;229:1390–3.

    Article  CAS  PubMed  Google Scholar 

  10. Finger LR, Harvey RC, Moore RCA, Showe LC, Croce CM. A common mechanism of chromosomal translocation in T- and B-cell neoplasia. Science. 1986;234:982–5.

    Article  CAS  PubMed  Google Scholar 

  11. Croce CM. Role of chromosome translocations in human neoplasia. Cell. 1987;49:155–6.

    Article  CAS  PubMed  Google Scholar 

  12. Tomlins SA, Rhodes DR, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310:644–8.

    Article  CAS  PubMed  Google Scholar 

  13. Nakamura E, Mori T, Tada S, et al. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol Cell. 2002;10:1119–28.

    Article  CAS  PubMed  Google Scholar 

  14. Arteaga CL. Epidermal growth factor receptor dependence in human tumors: more than just expression? Oncologist. 2002;7:31–9.

    Article  CAS  PubMed  Google Scholar 

  15. Kim DY, Kim MJ, Kim HB, Lee JW, Bae JH, Kim DW, et al. Suppression of multidrug resistance by treatment with TRAIL in human ovarian and breast cancer cells with high level of c-Myc. Biochim Biophys Acta. 1812;2011:796–805.

    Google Scholar 

  16. Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004;10:789–99.

    Article  CAS  PubMed  Google Scholar 

  17. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  PubMed  Google Scholar 

  18. Parada LF, Tabin CJ, Shih C, Weinberg RA. Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature. 1982;297:474–8.

    Article  CAS  PubMed  Google Scholar 

  19. Gambke C, Signer E, Moroni C. Activation of N-ras gene in bone marrow cells from a patient with acute myeloblastic leukaemia. Nature. 1984;307:476–8.

    Article  CAS  PubMed  Google Scholar 

  20. Xue-mei S, Graham JL. Abnormal protein tyrosine kinases associated with human haematological malignancies. Chin J Cancer Res. 2002;14:79–83.

    Article  Google Scholar 

  21. Blume JP, Hunter T. Oncogenic kinase signalling. Nature. 2001;411:355–65.

    Article  Google Scholar 

  22. Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer. 2005;5:341–54.

    Article  CAS  PubMed  Google Scholar 

  23. Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 2007;26:3291–310.

    Article  CAS  PubMed  Google Scholar 

  24. Steelman LS, Abrams SL, Whelan J, Bertrand FE, Ludwig DE, Bäsecke J, et al. Contributions of the Raf/MEK/ERK, P13K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia. Leukemia. 2008;22:686–707.

    Article  CAS  PubMed  Google Scholar 

  25. Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26:3279–90.

    Article  CAS  PubMed  Google Scholar 

  26. Alumbres M. Barbacid M RAS oncogenes: the first 30 years. Nat Rev Cancer. 2003;3:459–65.

    Article  CAS  Google Scholar 

  27. Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature. 2002;418:934.

    Article  CAS  PubMed  Google Scholar 

  28. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54.

    Article  CAS  PubMed  Google Scholar 

  29. Frohling S, Dohner H. Chromosomal abnormalities in cancer. N Engl J Med. 2008;359:722–34.

    Article  CAS  PubMed  Google Scholar 

  30. Nilsson JA, Cleveland JL. Myc pathways provoking cell suicide and cancer. Oncogene. 2003;22:9007–21.

    Article  CAS  PubMed  Google Scholar 

  31. Macauley VM, Sohail M. Molecular targeting of the IGF-1 receptor. 2005; US20040996951.

  32. Khvorova A, Reynolds A, Leake D, et al. siRNA targeting insulin-like growth factor 1 receptor (IGF-1R). 2007; US20070732457.

  33. Evers BM, Rychahou P. SiRNA targeting PI3K signal transduction pathway and siRNA-based therapy. 2005; US20050085962.

  34. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003;3:401–10.

    Article  CAS  PubMed  Google Scholar 

  35. Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov. 2007;6:273–86.

    Article  CAS  PubMed  Google Scholar 

  36. Gentile A, Trusolino L, Comoglio PM. The Met tyrosine kinase receptor in development and cancer. Cancer Metastasis Rev. 2008;27:85–94.

    Article  CAS  PubMed  Google Scholar 

  37. Shinomiya N, Woude GFV. c-met siRNA adenovirus vectors inhibit cancer cell growth, invasion and tumorigenicity. 2007; US20050599327.

  38. Khvorova A, Reynolds A, Leake D, et al. siRNA targeting proto-oncogene MET. 2008; US20070980263.

  39. Kraus MH, Pierce JH, Fleming TP, Robbins KC, Di Fiore PP, Aaronson SA. Mechanisms by which genes encoding growth factors and growth factor receptors contribute to malignant transformation. Ann N Y Acad Sci. 1988;551:320–35.

    Article  CAS  PubMed  Google Scholar 

  40. Khvorova A, Reynolds A, Leake D, et al. siRNA targeting platelet-derived growth factor receptor beta polypeptide (PDGFR). 2008; US20070731890.

  41. Mc Swiggen J, Beigelman L, Chowrira BM. RNA interference mediated inhibition of platelet derived growth factor (PDGF) and platelet derived growth factor receptor (PDGFR) gene expression using short interfering nucleic acid. 2003;WO 2003072704 A2

  42. Reich SJ, Tolentino MJ. Compositions and methods for siRNA inhibition of angiopoietin 1 and 2 and their receptor Tie2. 2004; US20040827759.

  43. Shen J, Samul R, Silva RL, Akiyama H, Liu H, Saishin Y, et al. Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1. Gene Ther. 2006;13:225–34.

    Article  CAS  PubMed  Google Scholar 

  44. Reich SJ, Fosnot J, Kuroki A, Tang W, Yang X, Maguire AM, et al. Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Mol Vis. 2003;9:210–6.

    CAS  PubMed  Google Scholar 

  45. Lu PY, Xie FY, Woodle MC. Modulation of angiogenesis with siRNA inhibitors for novel therapeutics. Trends Mol Med. 2005;11:104–13.

    Article  CAS  PubMed  Google Scholar 

  46. Campochiaro PA. Potential applications for RNAi to probe pathogenesis and develop new treatments for ocular disorders. Gene Ther. 2006;13:559–62.

    Article  CAS  PubMed  Google Scholar 

  47. Lakka SS, Gondi CS, Yanamandra N, Olivero WC, Dinh DH, Gujrati M, et al. Inhibition of cathepsin B and MMP 9 gene expression in glioblastoma cell line via RNA interference reduces tumor cell invasion, tumor growth and angiogenesis. Oncogene. 2004;23:4681–9.

    Article  CAS  PubMed  Google Scholar 

  48. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Auguri DJ, Belli BA, et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature. 2005;435:677–81.

    Article  CAS  PubMed  Google Scholar 

  49. Khvorova A, Reynolds A, Leake D, et al. Functional and hyperfunctional siRNA directed against Bcl-2. 2008; US20070974878.

  50. McSwiggen J, Beigelman L. RNA interference mediated inhibition of B-cell CLL/Lymphoma-2 (BCL-2) gene expression using short interfering nucleic acid (siNA). 2005; US20040923516

  51. Wang K, Chen X, Yan F, Xing Y, Yang X, Tu J, et al. 5′-Triphosphate-siRNA against surviving gene induces interferon production and inhibits proliferation of lung cancer cells in vitro. J Immunother. 2013;36:294–304.

    Article  CAS  PubMed  Google Scholar 

  52. Adhim Z, Otsuki N, Kitamoto J, Morishita N, Kawabata M, Shirakawa T, et al. Gene silencing with siRNA targeting E6/E7 as a therapeutic intervention against head and neck cancer-containing HPV16 cell lines. Acta Otolaryngol. 2013;3:761–71. doi:10.3109/00016489.2013.773405.

    Article  CAS  Google Scholar 

  53. Huang B, Zhou H, Wang X, Liu Z. Silencing SATB1 with siRNA inhibits the proliferation and invasion of small cell lung cancer cells. Cancer Cell Int. 2013;13:8. doi:10.1186/1475-2867-13-8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Pirollo KF, Zon G, Rait A, Zhou Q, Yu W, Hogrefe R, et al. Tumor-targeting nanoimmunoliposome complex for short interfering RNA delivery. Hum Gene Ther. 2006;17:117–24.

    Article  CAS  PubMed  Google Scholar 

  55. Ganesh S, Iyer AK, Weiler J, Morrissey DV, Amiji MM. Combination of siRNA-directed gene silencing with cisplatin reverses drug resistance in human non-small cell lung cancer. Mol Ther Nucleic Acids. 2013;2:e110. doi:10.1038/mtna.2013.29.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Todorovic V, Sersa G, Cemazar M. siRNAs against CD146 inhibits migration and invasion of human malignant melanoma cells SK-MEL28. Cancer Gene Ther. 2013;20:208–10.

    Article  CAS  PubMed  Google Scholar 

  57. Wiktorska M, Sacewicz-Hofman I, Stasikowska-Kanicka O, Danilewicz M, Niewiarowska J. Distinct inhibitory efficiency of siRNAs and DNAzymes to β1 integrin subunit in blocking tumor growth. Acta Biochim Pol. 2013;60:77–82.

    CAS  PubMed  Google Scholar 

  58. Bisanz K, Yu J, Edlund M, Spohn B, Hung MC, Chung LW, et al. Targeting ECM-integrin interaction with liposome-encapsulated small interfering RNAs inhibits the growth of human prostate cancer in a bone xenograft imaging model. Mol Ther. 2005;12:634–43.

    Article  CAS  PubMed  Google Scholar 

  59. Santel A, Aleku M, Keil O, Endruschat J, Esche V, Durieux B, et al. RNA interference in the mouse vascular endothelium by systemic administration of siRNA–lipoplexes for cancer therapy. Gene Ther. 2006;13:1360–70.

    Article  CAS  PubMed  Google Scholar 

  60. Kristina W, Thiel L, Hernandez I, Dassie JP, Thiel WH, Xiuying L, et al. Delivery of chemo-sensitizing siRNAs to HER2+-breast cancer cells using RNA aptamers. Nucleic Acids Res. 2012;40:6319–37.

    Article  CAS  Google Scholar 

  61. Pillé JY, Li H, Blot E, Bertrand JR, Pritchard LL, Opolon P, et al. Intravenous delivery of anti-RhoA small interfering RNA loaded in nanoparticles of chitosan in mice: safety and efficacy in xenografted aggressive breast cancer. Hum Gene Ther. 2006;17:1019–26.

    Article  PubMed  Google Scholar 

  62. Hu K, Law JH, Fotovati A, Dunn SE. Small interfering RNA library screen identified polo-like kinase-1 (PLK1) as a potential therapeutic target for breast cancer that uniquely eliminates tumor-initiating cells. Breast Cancer Res. 2012;14:R22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Ellermeier J, Wei J, Duewell P, Hoves S, Stieg MR, Adunka T, et al. Therapeutic efficacy of bifunctional siRNA combining TGF-β1 silencing with RIG-I activation in pancreatic cancer. Cancer Res. 2013;73:1709–20.

    Article  CAS  PubMed  Google Scholar 

  64. Yin R, Hiu WC, Geoffrey VM, Amit A, Glenn SC, Barbara AW, et al. Targeted tumor-penetrating siRNA nanocomplexes for credentialing the ovarian cancer oncogene ID4. Cancer. 2012;4:147ra112.

    Google Scholar 

  65. Yano J, Hirabayashi K, Nakagawa S, Yamaguchi T, Nogawa M, Kashimori I, et al. Antitumor activity of small interfering RNA/cationic liposome complex in mouse models of cancer. Clin Cancer Res. 2004;10:7721–6.

    Article  CAS  PubMed  Google Scholar 

  66. Goldberg MS, Sharp PA. Pyruvate kinase M2-specific siRNA induces apoptosis and tumor regression. J Exp Med. 2012;209:217–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. He W, Liu T, Chen YX, Cheng DJ, Li XR, Xiao Y, et al. Calcium carbonate nanoparticle delivering vascular endothelial growth factor-C siRNA effectively inhibits lymphangiogenesis and growth of gastric cancer in vivo. Cancer Gene Ther. 2008;15:193–202.

    Article  CAS  PubMed  Google Scholar 

  68. Liu K, Chen H, You Q, Shi H, Wang Z. The siRNA cocktail targeting VEGF and HER2 inhibition on the proliferation and induced apoptosis of gastric cancer cell. Mol Cell Biochem. 2014;386:117–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Tai J, Wang G, Liu T, Wang L, Lin C, Li F. Effects of saran targeting c-Myc and VEGF on human colorectal cancer Vole cells. J Brioche Mol Topical. 2013. doi:10.1002/jbt.21478.

    Article  Google Scholar 

  70. Grzelinski M, Urban-Klein B, Martens T, Lamszus K, Bakowsky U, Höbel SF, et al. RNA interference-mediated gene silencing of pleiotrophin through polyethylenimine-complexed small interfering RNAs in vivo exerts antitumoral effects in glioblastoma xenografts. Hum Gene Ther. 2006;17:751–66.

    Article  CAS  PubMed  Google Scholar 

  71. Chetty C, Lakka SS, Bhoopathi P, Gondi CS, Veeravalli KK, Fassett D, et al. Urokinase plasminogen activator receptor and/or matrix metalloproteinase-9 inhibition induces apoptosis signaling through lipid rafts in glioblastoma xenograft cells. Mol Cancer Ther. 2010;9:2605–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Yang L, Lu Z, Ma X, Cao Y, Sun LQ. A therapeutic approach to nasopharyngeal carcinomas by DNAzymes targeting EBV LMP-1 gene. Molecules. 2010;15:6127–39.

    Article  CAS  PubMed  Google Scholar 

  73. Lu ZX, Ma XQ, Yang LF, Wang ZL, Zeng L, Li ZJ, et al. DNAzymes targeted to EBV-encoded latent membrane protein-1 induce apoptosis and enhance radiosensitivity in nasopharyngeal carcinoma. Cancer Lett. 2008;265:226–38.

    Article  CAS  PubMed  Google Scholar 

  74. You X, Yang YC, Ke X, Hong SL, Hu GH. Fluorescence visualization screening for EBV-LMP1-targeted DNAzymes. Otolaryngol Head Neck Surg. 2014;150:251–8. doi:10.1177/0194599813514514.

    Article  PubMed  Google Scholar 

  75. Yang L, Xu Z, Liu L, Luo X, Lu J, Sun L, et al. Targeting EBV-LMP1 DNAzyme enhances radiosensitivity of nasopharyngeal carcinoma cells by inhibiting telomerase activity. Cancer Biol Ther. 2014;15:61–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Shen L, Zhou Q, Wang Y, Liao W, Chen Y, Xu Z, et al. Antiangiogenic and antitumoral effects mediated by a vascular endothelial growth factor receptor 1 (VEGFR-1)-targeted DNAzyme. Mol Med. 2013;19:377–86.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Mitchell A, Dass CR, Sun LQ, Khachigian LM. Inhibition of human breast carcinoma proliferation, migration, chemoinvasion and solid tumor growth by DNAzymes targeting the zinc finger transcription factor EGR-1. Nucleic Acids Res. 2004;32:3065–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Fahmy RG, Dass CR, Sun LQ, Chesterman CN, Khachigian LM. Transcription factor Egr-1 supports FGF-dependent angiogenesis during neovascularization and tumor growth. Nat Med. 2003;9:1026–32.

    Article  CAS  PubMed  Google Scholar 

  79. Zhang L, Gasper WJ, Stass SA, Ioffe OB, Davis MA, Mixson AJ. Angiogenic inhibition mediated by a DNAzyme that targets vascular endothelial growth factor receptor 2. Cancer Res. 2002;62:5463–9.

    CAS  PubMed  Google Scholar 

  80. Hallet MA, Teng B, Hasegawa H, Schwab LP, Seagroves TN, Pourmotabbed T. Anti-matrix metalloproteinase-9 DNAzyme decreases tumor growth in the MMTV-PyMT mouse model of breast cancer. Breast Cancer Res. 2013;15:R12.

    Article  CAS  Google Scholar 

  81. Zeng W, Deng L, Zhou R. Experimental study of targeting MMP-9 deoxyribozyme role of adhesion and migration in human lung adenocarcinoma cancer cell (in Chinese). Chin J Lung Cancer. 2008;11:765–8.

    CAS  Google Scholar 

  82. Yang L, Zeng W, Li D, Zhou R. Inhibition of cell proliferation, migration and invasion by DNAzyme targeting MMP-9 in A549 cells. Oncol Rep. 2009;22:121–6.

    Article  CAS  PubMed  Google Scholar 

  83. Min Z, Zhao H, Luo FY, Luo S, Shi W. IGF-II inhibitory DNAzymes inhibit the invasion and migration of hepatocarcinoma cells. Biotechnol Lett. 2011;33:911–7.

    Article  PubMed  CAS  Google Scholar 

  84. Liang ZY, Wei SZ, Guan J, Luo Y, Gao J, Zhu H, et al. DNAzyme-mediated cleavage of survivin mRNA and inhibition of the growth of PANC-1 cells. J Gastroenterol Hepatol. 2005;20:1595–602.

    Article  CAS  PubMed  Google Scholar 

  85. Wiktorska M, Papiewska-Pajak L, Okruszek A, Sacewicz-Hofman I, Neiwiarowska J. DNAzyme as an efficient tool to modulate invasiveness of human carcinoma cells. Acta Biochim Pol. 2010;57:269–75.

    CAS  PubMed  Google Scholar 

  86. Choi BR, Gwak J, Kwon HM, Oh S, Kim KP, Choi WHH, et al. Oligodeoxyribozymes that cleave β catenin messenger RNA inhibit growth of colon cells via reduction of β-catenin response transcription. Mol Cancer Ther. 2010;9:1894–902.

    Article  CAS  PubMed  Google Scholar 

  87. Yu SH, Wang TH, Au LC. Specific repression of mutant K-RAS by 10–23 DNAzyme: sensitizing cancer cell to anti-cancer therapies. Biochem Biophys Res Commun. 2009;378:230–4.

    Article  CAS  PubMed  Google Scholar 

  88. Qu Y, Zhang L, Mao M, Zhao F, Huang X, Yang C, et al. Effects of DNAzymes targeting aurora kinase A on the growth of human prostate cancer. Cancer Gene Ther. 2008;15:517–25.

    Article  CAS  PubMed  Google Scholar 

  89. Nna E, Madukwe J, Egbujo E, Obiorah C, Okolie C, Echejoh G, et al. Gene expression of Aurora kinases in prostate cancer and nodular hyperplasia tissues. Med Princ Pract. 2013;22:138–43.

    Article  PubMed  Google Scholar 

  90. Zhang G, Luo X, Sumithran E, Pua VS, Barnetson RS, Halliday GM, et al. Squamous cell carcinoma growth in mice and in culture is regulated by c-Jun and its control of matrix metalloproteinase-2 and -9 expression. Oncogene. 2006;25:7260–6.

    Article  CAS  PubMed  Google Scholar 

  91. Wu Y, Yu L, Mcmahon R, Rossi JJ, Forman SJ, Snyder DS. Inhibition of bcr-abl oncogene expression by novel deoxyribozymes (DNAzymes). Hum Gene Ther. 1999;10:2847–57.

    Article  CAS  PubMed  Google Scholar 

  92. Kabuli M, Yin JL, Tobal K. Targeting PML/RARα transcript with DNAzymes results in reduction of proliferation and induction of apoptosis in APL cells. Hematol J. 2005;5:426–33.

    Article  CAS  Google Scholar 

  93. Zhang G, Dass CR, Sumithran E, Di Girolamo N, Sun LQ, Khachigian LM. Effect of deoxyribozymes targeting c-Jun on solid tumor growth and angiogenesis in rodents. J Natl Cancer Inst. 2004;96:683–96.

    Article  CAS  PubMed  Google Scholar 

  94. Dass CR, Galloway SJ, Clark JC, Khachigian LM, Choong PF. Involvement of c-jun in human liposarcoma growth: supporting data from clinical immunohistochemistry and DNAzyme efficacy. Cancer Biol Ther. 2008;7:1297–301.

    Article  CAS  PubMed  Google Scholar 

  95. De Bock CE, Lin Z, Itoh T, Morris D, Murrel G, Wang Y. Inhibition of urokinase receptor gene expression and cell invasion by anti-uPAR DNAzymes in osteosarcoma cells. FEBS J. 2005;272:3572–82.

    Article  PubMed  CAS  Google Scholar 

  96. Cai H, Santiago FS, Prado-Lourenco L, Wang B, Patrikakis M, Davenport MP, et al. DNAzyme targeting c-jun suppresses skin cancer growth. Sci Transl Med. 2012;4:139ra82.

    Article  PubMed  CAS  Google Scholar 

  97. Yang L, He JT, Guan H, Sun YD. AKT1 inhibitory DNAzymes inhibit cell proliferation and migration of thyroid cancer cells. Asian Pac J Cancer Prev. 2013;14:2571–5.

    Article  PubMed  Google Scholar 

  98. Parker JS, Roe SM, Barford D. Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex. Nature. 2005;434:663–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Ma JB, Yuan YR, Meister G, Pei Y, Tuschl T, Patel DJ. Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature. 2005;434:666–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 2001;20:6877–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Amarzguioui M, Holen T, Babaie E, Prydz H. Tolerance for mutations and chemical modifications in siRNA. Nucleic Acids Res. 2003;31:589–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Braasch DA, Jensen S, Liu YH, Kaur K, Arar K, White MA, et al. RNA interference in mammalian cells by chemically-modified RNA. Biochemistry. 2003;42:7967–75.

    Article  CAS  PubMed  Google Scholar 

  103. Hall AHS, Wan J, Shaughnessy EE, Shaw BR, Alexander KA. RNA interference using boranophosphate siRNAs: structure–activity relationships. Nucleic Acids Res. 2004;32:5991–6000.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Martinez J, Tuschl T. RISC is a 5′ phosphomonoester-producing RNA endonuclease. Cancer Dev. 2004;18:975–80.

    CAS  Google Scholar 

  105. Parrish S, Fleenor J, Xu S, Mello C, Fire A. Functional anatomy of a dsRNA trigger: differential requirement for the two trigger strands in RNA interference. Mol Cell. 2000;6:1077–87.

    Article  CAS  PubMed  Google Scholar 

  106. Prakash TP, Allerson CR, Dande P, Vickers TA, Sioufi N, Jarres R, et al. Positional effect of chemical modifications on short interference RNA activity in mammalian cells. J Med Chem. 2005;48:4247–53.

    Article  CAS  PubMed  Google Scholar 

  107. Layzer JM, McCaffrey AP, Tanner AK, Huang Z, Kay MA, Sullenger BA. In vivo activity of nuclease-resistant siRNAs. RNA. 2004;10:766–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Dowler T, Bergeron D, Tedeschi AL, Paquet L, Ferrari N, Damha MJ. Improvements in siRNA properties mediated by 2′-deoxy-2′-fluoro-beta-D-arabinonucleic acid (FANA). Nucleic Acids Res. 2006;34:1669–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Shen L, Zhang C, Ambrus JL, Wang JH. Silencing of human c-myc oncogene expression by poly-DNP-RNA. Oligonucleotides. 2005;15:23–35.

    Article  CAS  PubMed  Google Scholar 

  110. Elmen J, Thonberg H, Ljungberg K, Frieden M. Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res. 2005;33:439–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Dande P, Prakash TP, Sioufi N, Gaus H, Jarres R, Berdeja A, et al. Improving RNA interference in mammalian cells by 4′-thio-modified small interfering RNA (siRNA): effect on siRNA activity and nuclease stability when used in combination with 2′-O-alkyl modifications. J Med Chem. 2006;49:1624–34.

    Article  CAS  PubMed  Google Scholar 

  112. Butz K, Ristriani T, Hengstermann A, Denk C, Scheffner M, Hoppe-Seyler F. siRNA targeting of the viral E6 oncogene efficiently kills human papillomavirus-positive cancer cells. Oncogene. 2003;22:5938–45.

    Article  CAS  PubMed  Google Scholar 

  113. Semizarov D, Kroeger P, Fesik S. siRNA-mediated gene silencing: a global genome view. Nucleic Acids Res. 2004;32:3836–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Behlke MA. Progress towards in vivo use of siRNAs. Mol Ther. 2006;13:644–70.

    Article  CAS  PubMed  Google Scholar 

  115. Tousignant JD, Gates AL, Ingram LA, Ohnson CL, Nietupski JB, Cheng SH, et al. Comprehensive analysis of the acute toxicities induced by systemic administration of cationic lipid: plasmid DNA complexes in mice. Hum Gene Ther. 2000;11:2493–513.

    Article  CAS  PubMed  Google Scholar 

  116. Dass CR. Cytotoxicity issues pertinent to lipoplex-mediated gene therapy in vivo. J Pharm Pharmacol. 2002;54:593–601.

    Article  CAS  PubMed  Google Scholar 

  117. Chien PY, Wang J, Carbonaro D, Lei S, Miller B, Sheikh S, et al. Novel cationic cardiolipin analogue-based liposome for efficient DNA and small interfering RNA delivery in vitro and in vivo. Cancer Gene Ther. 2005;12:321–8.

    Article  CAS  PubMed  Google Scholar 

  118. Ahmad I, Zhang ZY, Zhang JA, et al. Lipid compositions and use thereof. 2005; CA20052559352.

  119. Morrissey DV, Lockridge JA, Shaw L, Blanchard K, Jensen K, Breen W, et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol. 2005;23:1002–7.

    Article  CAS  PubMed  Google Scholar 

  120. Mc Swiggen J, Morrissey D, Guerciolini R, et al. RNA interference mediated inhibition of hepatitis C virus (HCV) gene expression using short interfering nucleic acid (siNA). 2009; WO2006US62252.

  121. Czech B, Malone CD, Zhou R, Stark A, Schlingeheyde C, Dus M, et al. An endogenous small interfering RNA pathway in Drosophila. Nature. 2008;453:798–802.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  122. Urban-Klein B, Werth S, Abuharbeid S, Czubayko F, Aigner A. RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther. 2005;12:461–6.

    Article  CAS  PubMed  Google Scholar 

  123. Leong KW, Mao HQ, Truong-Le VL, Roy K, Walsh SM, August JT, et al. DNA-polycation nanospheres as non-viral gene delivery vehicles. J Control Release. 1998;53:183–93.

    Article  CAS  PubMed  Google Scholar 

  124. Gary DJ, Puri N, Won YY. Polymer-based siRNA delivery: perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery. J Control Release. 2007;121:64–73.

    Article  CAS  PubMed  Google Scholar 

  125. Schiffelers RM, Ansari A, Xu J, Zhou Q, Tang Q, Storm G, et al. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 2004;32:e149.

    Article  PubMed Central  PubMed  Google Scholar 

  126. Pun SH, Bellocq NC, Liu A, Jensen G, Machemer T, Quijano E, et al. Cyclodextrin-modified polyethylenimine polymers for gene delivery. Bioconjug Chem. 2004;15:831–40.

    Article  CAS  PubMed  Google Scholar 

  127. Pun SH, Tack F, Bellocq NC, Cheng J, Grubbs BH, Jensen GS, et al. Targeted delivery of RNA-cleaving DNA enzyme (DNAzyme) to tumor tissue by transferrin-modified, cyclodextrin-based particles. Cancer Biol Ther. 2004;3:641–50.

    Article  CAS  PubMed  Google Scholar 

  128. Davis ME, Pun SH, Bellocq NC, Reineke TM, Popielarski SR, Mishra S, et al. Self-assembling nucleic acid delivery vehicles via linear, water-soluble, cyclodextrin-containing polymers. Curr Med Chem. 2004;11:179–97.

    Article  CAS  PubMed  Google Scholar 

  129. O’Mahony AM, Desgranges S, Ogier J, Quinlan A, Devocelle M, Darcy R, et al. In vitro investigations of the efficacy of cyclodextrin-siRNA complexes modified with lipid-PEG-Octaarginine: towards a formulation strategy for non-viral neuronal siRNA delivery. Pharm Res. 2013;30:1086–98.

    Article  PubMed  CAS  Google Scholar 

  130. Howard KA, Rahbek UL, Liu X, et al. RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol Ther. 2006;14:476–84.

    Article  CAS  PubMed  Google Scholar 

  131. Howard KA, Paludan SR, Behlke MA, Besenbacher F, Deleuran B, Kjems J. Chitosan/siRNA nanoparticle-mediated TNF-alpha knockdown in peritoneal macrophages for anti-inflammatory treatment in a murine arthritis model. Mol Ther. 2009;17:162–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  132. Hanai K, Takeshita F, Honma K, Nagahara S, Maeda M, Minakuchi Y, et al. Atelocollagen-mediated systemic DDS for nucleic acid medicines. Ann N Y Acad Sci. 2006;1082:9–17.

    Article  CAS  PubMed  Google Scholar 

  133. Takeshita F, Minakuchi Y, Nagahara S, Honna K, Sasaki H, Hirai K, et al. Efficient delivery of small interfering RNA to bone-metastatic tumors by using atelocollagen in vivo. Proc Natl Acad Sci U S A. 2005;102:12177–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  134. Minakuchi Y, Takeshita F, Kosaka N, Sasaki H, Yamamoto Y, Kouno M, et al. Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and in vivo. Nucleic Acids Res. 2004;32:e109.

    Article  PubMed Central  PubMed  Google Scholar 

  135. Inaba S, Nagahara S, Makita N, et al. Atelocollagen-mediated systemic delivery prevents immunostimulatory adverse effects of siRNA in mammals. Mol Ther. 2012;20:356–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  136. Song E et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol. 2005;23:709–17.

    Article  CAS  PubMed  Google Scholar 

  137. Toloue MM, Ford LP. Antibody targeted siRNA delivery. Methods Mol Biol. 2011;764:123–39.

    Article  CAS  PubMed  Google Scholar 

  138. Hu-lieskovan S, Heidel JD, Bartlett DW, Davis ME, Triche TJ. Sequence-specific knockdown of EWS-FLI1 by targeted, noviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing’s sarcoma. Cancer Res. 2005;65:8984–92.

    Article  CAS  PubMed  Google Scholar 

  139. Wilner SE, Wengerter B, Maier K, de Lourdes Borba Magalhães M, Del Amo DS, Pai S, et al. An RNA alternative to human transferrin: a new tool for targeting human cells. Mol Ther Nucleic Acids. 2012;1(5):e21.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  140. Chen CH, Dellamaggiore KR, Ouellette CP, Sedano CD, Lizadjohry M, Chernis GA, et al. Aptamer-based endocytosis of a lysosomal enzyme. Proc Natl Acad Sci U S A. 2008;105:15908–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  141. Chono S, Li SD, Conwell CC, Huang L. An efficient and low immunostimulatory nanoparticle formulation for systemic siRNA delivery to the tumor. J Control Release. 2008;131:64–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  142. Achenbach JC, Chiuman W, Cruz RP, Li Y. DNAzymes: from creation in vitro to application in vivo. Curr Pharm Biotechnol. 2004;5:321–36.

    Article  CAS  PubMed  Google Scholar 

  143. Wang Y, Xu Z, Guo S, et al. Intravenous delivery of siRNA targeting CD47 effectively inhibits melanoma tumor growth and lung metastasis. Mol Ther. 2013;21:1919–29.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  144. Yang XZ, Dou S, Wang YC, et al. Single-step assembly of cationic lipid–polymer hybrid nanoparticles for systemic delivery of siRNA. ACS Nano. 2012;6:4955–65.

    Article  CAS  PubMed  Google Scholar 

  145. Schlegel A, Bigey P, Dhotel H, Scherman D, Escriou V. Reduced in vitro and in vivo toxicity of siRNA-lipoplexes with addition of polyglutamate. J Control Release. 2013;165:1–8.

    Article  CAS  PubMed  Google Scholar 

  146. Asai T, Matsushita S, Kenjo E, et al. Dicetyl phosphate-tetraethylenepentamine-based liposomes for systemic siRNA 145 delivery. Bioconjug Chem. 2011;22:429–35.

    Article  CAS  PubMed  Google Scholar 

  147. Schlegel A, Largeau C, Bigey P, et al. Anionic polymers for decreased toxicity and enhanced in vivo delivery of siRNA complexed with cationic liposomes. J Control Release. 2011;152:393–401.

    Article  CAS  PubMed  Google Scholar 

  148. Bartel DP, Szostak JW. Isolation of a new ribozymes from a large pool of random sequences. Science. 1993;261:1411–8.

    Article  CAS  PubMed  Google Scholar 

  149. Santoro SW, Joyce GF. A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci U S A. 1997;94:4262–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  150. Santoro SW, Joyce GF. Mechanism and utility of an RNA-cleaving DNA enzyme. Biochemistry. 1998;37:13330–42.

    Article  CAS  PubMed  Google Scholar 

  151. Robertson DL, Joyce GF. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature. 1990;344:467–8.

    Article  CAS  PubMed  Google Scholar 

  152. Perreault JP, Wu T, Cousineau B, Cedergren R. Mixed deoxyribo- and ribo-oligonucleotides with catalytic activity. Nature. 1990;344:565–7.

    Article  CAS  PubMed  Google Scholar 

  153. Yang JH, Usman N, Chartrand P, Robert C. Minimum ribonucleotide requirement for catalysis by the RNA hammerhead domain. Biochemistry. 1992;31:5005–9.

    Article  CAS  PubMed  Google Scholar 

  154. Paquette J, Nicoghosian K, Qi GR, Beauchemin N, Cedergren R. The conformation of single-stranded nucleic acids tDNA versus tRNA. Eur J Biochem. 1990;189:259–65.

    Article  CAS  PubMed  Google Scholar 

  155. Breaker RR, Joyce GF. DNA enzyme that cleaves RNA. J Chem Biol. 1994;1:223–9.

    Article  CAS  Google Scholar 

  156. Geyer RC, Sen D. Evidence for the metal-cofactor independence of an RNA phosphodiester-cleaving DNA enzyme. J Chem Biol. 1997;4:579–93.

    Article  CAS  Google Scholar 

  157. Perrin DM, Garestier T, Helene CJ. A ligand-modulated padlock oligonucleotide for supercoiled plasmids. Am Chem Soc. 2001;123:1556–63.

    Article  CAS  Google Scholar 

  158. Wickstrom E. Oligodeoxynucleotide stability in subcellular extracts and culture media. J Biochem Biophys Methods. 1986;13:97–102.

    Article  CAS  PubMed  Google Scholar 

  159. Eder PS, Devine RJ, Dagle JM, Walder JA. Substrate specificity and kinetics of degradation of antisense oligonucleotides by a 3′ exonuclease in plasma. Antisense Res Dev. 1991;1:141–51.

    Article  CAS  PubMed  Google Scholar 

  160. Sioud M, Leirdal M. Design of nuclease resistant protein kinase Ca DNA enzymes with potential therapeutic application. J Mol Biol. 2000;296:937–47.

    Article  CAS  PubMed  Google Scholar 

  161. Vaerman JL, Moureau P, Deldime F, Lewalle P, Lammineur C, Morschhauser F. Antisense oligodeoxyribonucleotides suppress hematologic cell growth through stepwise release of deoxyribonucleotides. Blood. 1997;90:331–9.

    CAS  PubMed  Google Scholar 

  162. SunL Q, Cairns MJ, Gerlach WL, Witherington C, Wang L, King A. Suppression of smooth muscle cell proliferation by a c-myc RNA-cleaving deoxyribozyme. J Biol Chem. 1999;274:17236–41.

    Article  Google Scholar 

  163. Iversen PO, Nicolaysen G, Sioud M. DNA enzyme targeting TNFalpha mRNA improves hemodynamic performance in rats with post infarction heart failure. Am J Physiol Heart Circ Physiol. 2001;281:2211–7.

    Article  Google Scholar 

  164. Iversen PO, Emanuel PD, Sioud M. Targeting Raf-1 gene expression by a DNA enzyme inhibits juvenile myelomonocytic leukemia cell growth. Blood. 2002;99:4147–53.

    Article  CAS  PubMed  Google Scholar 

  165. Warashina M, Kuwabara T, Nakamatsu Y, Taira K. Extremely high and specific activity of DNA enzymes in cells with a Philadelphia chromosome. Chem Biol. 1999;6:237–50.

    Article  CAS  PubMed  Google Scholar 

  166. Cieslak M, Niewiarowska J, Nawrot M, Koziolkiewicz M, Stec WJ, Cierniewski C. DNAzymes to β1 and β3 mRNA down-regulate expression of the targeted integrins and inhibit endothelial cell capillary tube formation in fibrin and Matrigel. J Biol Chem. 2002;277:6779–87.

    Article  CAS  PubMed  Google Scholar 

  167. Takahashi H, Hamazaki H, Habu Y, Hayashi M, Abe T, Miyano-Kurosaki N, et al. A new modified DNA enzyme that targets influenza virus A. FEBS Lett. 2004;560:69–74.

    Article  CAS  PubMed  Google Scholar 

  168. Pun SH, Bellocq NC, Cheng J, Grubbs BH, Jensen GS, Davis ME, et al. Biodistribution of RNA-cleaving DNA enzyme (DNAzyme) to tumor tissue by transferrin-modified, cyclodextrin-based particles. Can Biol Ther. 2004;3:641–50.

    Article  CAS  Google Scholar 

  169. Levin A. A review of the issues in the pharmacokinetics and toxicology of phosphorothioate antisense oligonucleotides. Biochim Biophys Acta. 1999;1489:69–84.

    Article  CAS  PubMed  Google Scholar 

  170. Wengel J, Petersen M, Nielsen KE, Jensen GA, Hakansson AE, Kumar R. LNA (locked nucleic acid) and the diastereoisomeric alpha-L-LNA: conformational tuning and high-affinity recognition of DNA/RNA targets. Nucleotides Nucleic Acids. 2001;20:389–96.

    Article  CAS  Google Scholar 

  171. Petersen M, Wengel J. LNA a versatile tool for therapeutics and genomics. Trends Biotechnol. 2003;21:74–81.

    Article  CAS  PubMed  Google Scholar 

  172. Crinelli R, Bianchi M, Gentilini L, Palma L, Magnani M. Locked nucleic acids (LNA) versatile tools for designing oligonucleotide decoys with high stability and affinity. Curr Drug Targets. 2004;5:745–52.

    Article  CAS  PubMed  Google Scholar 

  173. Jakobsen M, Haasnoot R, Wengel J, Berkhout J, Kjems B. Efficient inhibition of HIV-1 expression by LNA modified antisense oligonucleotides and DNAzymes targeted to functionally selected binding sites. J Retrovirol. 2007;4:1–13.

    Article  CAS  Google Scholar 

  174. Schubert S, Fürste JP, Werk D, Grunert HP, Zeichhardt H, Erdmann VA, et al. Gaining target access for deoxyribozymes. J Mol Biol. 2004;339:355–63.

    Article  CAS  PubMed  Google Scholar 

  175. Doran G, Sohail M. Systemic analysis of the role of target site accessibility in the activity of DNA enzymes. J RNAi Gene Silenc. 2006;2:205–14.

    CAS  Google Scholar 

  176. Sohail M, Akhtar S, Southern EM. The folding of large RNAs studied by hybridization to arrays of complementary oligonucleotides. RNA. 1999;5:646–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  177. Beale G, Hollins AJ, Benboubetra M, Sohail M, Fox SP, Benter I, et al. Gene silencing nucleic acids designed by scanning arrays: anti-EGFR activity of siRNA, ribozyme and DNA enzymes targeting a single hybridization-accessible region using the same delivery system. J Drug Target. 2003;11:449–56.

    Article  CAS  PubMed  Google Scholar 

  178. Heidel JD. In vivo transfection using cyclodextrin-containing polycations. Cold Spring Harb Protoc. 2011;11. doi: 10.1101/pdb.prot066654

  179. Tack F, Bakker A, Maes S, Dekeyser N, Bruining M, Roman CE, et al. Modified poly(propelene imine) dendrimers as effective transfection agents for catalytic DNA enzymes (DNAzymes). Drug Target. 2006;14:69–86.

    Article  CAS  Google Scholar 

  180. Tack F, Noppe M, Van DA, Dekeyzer N, Leede BJ, Bakker A, et al. Delivery of a DNAzyme targeting c-myc to HT29 colon carcinoma cells using a gold nanoparticulate approach. Pharmazie. 2008;63:221–5.

    CAS  PubMed  Google Scholar 

  181. Kim DH, Behlke MA, Rose SD, Chang MS, Choi S, Rossi JJ. Interferon induction by siRNAs and ssRNAs synthesized by phage polymerase. Nat Biotechnol. 2004;22:321–5.

    Article  CAS  PubMed  Google Scholar 

  182. Jackson AL, Burchard J, Reynolds A, Schelter J, Guo J, Johnson JM, et al. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA. 2006;12:1179–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  183. Anderson EM, Birmingham A, Baskerville S, Baskerville S, Reynolds A, Maksimova E, et al. Experimental validation of the importance of seed complement frequency to siRNA specificity. RNA. 2008;14:853–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  184. Birmingham A, Anderson EM, Reynolds A, Ilsley-Tyree D, Leake D, Fedorov Y, et al. 3′ UTR seed matches, but not over all identity, are associated with RNAi target. Nat Methods. 2006;3:199–204.

    Article  CAS  PubMed  Google Scholar 

  185. Baum DA, Silverman SK. Deoxyribozymes: useful DNA catalysts in vitro and in vivo. Cell Mol Life Sci. 2008;65:2156–74.

    Article  CAS  PubMed  Google Scholar 

  186. Benson VL, Khachigian LM, Lowe HC. DNAzymes and cardiovascular disease. Br J Pharmacol. 2008;154:741–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Talluri Srikanth from the Department of Biochemistry, Western Ontario University and Prof. P. Reddanna from NIAB, Hyderabad, India, for the inputs in the manuscript. This work was supported by DBT-IYBA, DBT-RGYI, DBT-NIAB, DST, ICMR, and UGC grants from the Government of India. The authors appreciate the help of Dr. Kishore from the University of Hyderabad for his help in ChemDraw figures.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Kumar Gutti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karnati, H.K., Yalagala, R.S., Undi, R. et al. Therapeutic potential of siRNA and DNAzymes in cancer. Tumor Biol. 35, 9505–9521 (2014). https://doi.org/10.1007/s13277-014-2477-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2477-9

Keywords

Navigation