Advertisement

Tumor Biology

, Volume 36, Issue 1, pp 177–181 | Cite as

RETRACTED ARTICLE: Correlation between PARP-1 Val762Ala polymorphism and the risk of lung cancer in a Chinese population

  • Ping Yu
  • Yun-Peng Liu
  • Jing-Dong Zhang
  • Xiu-Juan Qu
  • Bo Jin
  • Ye Zhang
Research Article
  • 314 Downloads

Abstract

The aim of this study was to investigate the relationship of the PARP-1 Val762Ala (rs1136410 T>C) polymorphism and the risk of lung cancer. A population-based case–control study of 373 lung cancer patients and 360 healthy control subjects (individually matched on age and gender) in a Chinese population was conducted. Genomic DNA was extracted by the phenol-chloroform method from the peripheral blood. PARP-1 Val762Ala polymorphism was identified using polymerase chain reaction–restriction fragments length polymorphism technique. After adjusting for age, tobacco smoking, gender, smoking index, and drinking status, logistic regression analysis demonstrated that CC genotype in PARP-1 Val762Ala polymorphism had an increased risk of lung cancer compared with TT genotype (OR = 1.59, 95 % CI = 1.03 ~ 2.50, P = 0.048), a statistically difference that still existed when merging CC and TC genotypes (OR = 1.56, 95 % CI = 1.03 ~ 2.44, P = 0.042). However, no obvious difference was found between TT and TC (OR = 1.54, 95 % CI = 0.96 ~ 2.44, P = 0.073). Subgroup analysis by histological type indicated that adenocarcinoma patients had higher frequencies of CC or TC+CC genotypes than healthy controls (CC: OR = 1.85, 95 % CI = 1.12 ~ 3.03, P = 0.015; TC+CC: OR = 1.67, 95 % CI = 1.06 ~ 2.63, P = 0.027, respectively), but no statistically significant difference within each genotype in squamous cell carcinoma or small cell lung cancer (all P > 0.05). Our findings support the view that PARP-1 Val762Ala polymorphism may contribute to an increased risk of lung cancer in the Chinese population, especially for adenocarcinoma.

Keywords

Lung cancer PARP-1 Single nucleotide polymorphisms Adenocarcinoma 

Notes

Acknowledgments

We would like to acknowledge the helpful comments on this paper received from our reviewers.

Conflicts of interest

None.

References

  1. 1.
    Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc. 2008;83(5):584–94.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Corner J, Hopkinson J, Fitzsimmons D, Barclay S, Muers M. Is late diagnosis of lung cancer inevitable? Interview study of patients’ recollections of symptoms before diagnosis. Thorax. 2005;60(4):314–9.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.CrossRefPubMedGoogle Scholar
  4. 4.
    Alberg AJ, Brock MV, Samet JM. Epidemiology of lung cancer: looking to the future. J Clin Oncol. 2005;23(14):3175–85.CrossRefPubMedGoogle Scholar
  5. 5.
    Broderick P, Wang Y, Vijayakrishnan J, Matakidou A, Spitz MR, Eisen T, et al. Deciphering the impact of common genetic variation on lung cancer risk: a genome-wide association study. Cancer Res. 2009;69(16):6633–41.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Samet JM, Avila-Tang E, Boffetta P, Hannan LM, Olivo-Marston S, Thun MJ, et al. Lung cancer in never smokers: clinical epidemiology and environmental risk factors. Clin Cancer Res. 2009;15(18):5626–45.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Demirci E, Daloglu F, Gundogdu C, Calik M, Sipal S, Akgun M. Incidence and clinicopathologic features of primary lung cancer: a North-Eastern Anatolia region study in Turkey (2006–2012). Asian Pac J Cancer Prev. 2013;14(3):1989–93.CrossRefPubMedGoogle Scholar
  8. 8.
    Lam WK, White NW, Chan-Yeung MM. Lung cancer epidemiology and risk factors in Asia and Africa. Int J Tuberc Lung Dis. 2004;8(9):1045–57.PubMedGoogle Scholar
  9. 9.
    Boffetta P, Nyberg F. Contribution of environmental factors to cancer risk. Br Med Bull. 2003;68:71–94.CrossRefPubMedGoogle Scholar
  10. 10.
    Byers LA, Wang J, Nilsson MB, Fujimoto J, Saintigny P, Yordy J, et al. Proteomic profiling identifies dysregulated pathways in small cell lung cancer and novel therapeutic targets including PARP1. Cancer Discov. 2012;2(9):798–811.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Albert JM, Cao C, Kim KW, Willey CD, Geng L, Xiao D, et al. Inhibition of poly(ADP-ribose) polymerase enhances cell death and improves tumor growth delay in irradiated lung cancer models. Clin Cancer Res. 2007;13(10):3033–42.CrossRefPubMedGoogle Scholar
  12. 12.
    Kim MY, Zhang T, Kraus WL. Poly(ADP-ribosyl)ation by PARP-1: ‘PAR-laying’ NAD+ into a nuclear signal. Genes Dev. 2005;19(17):1951–67.CrossRefPubMedGoogle Scholar
  13. 13.
    Tentori L, Graziani G. Chemopotentiation by PARP inhibitors in cancer therapy. Pharmacol Res. 2005;52(1):25–33.CrossRefPubMedGoogle Scholar
  14. 14.
    Yu H, Ma H, Yin M, Wei Q. Association between PARP-1 V762A polymorphism and cancer susceptibility: a meta-analysis. Genet Epidemiol. 2012;36(1):56–65.CrossRefPubMedGoogle Scholar
  15. 15.
    Buch SC, Diergaarde B, Nukui T, Day RS, Siegfried JM, Romkes M, et al. Genetic variability in DNA repair and cell cycle control pathway genes and risk of smoking-related lung cancer. Mol Carcinog. 2012;51 Suppl 1:E11–20.CrossRefPubMedGoogle Scholar
  16. 16.
    Schreiber V, Dantzer F, Ame JC, de Murcia G. Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol. 2006;7(7):517–28.CrossRefPubMedGoogle Scholar
  17. 17.
    Hua RX, Li HP, Liang YB, Zhu JH, Zhang B, Ye S, et al. Association between the PARP1 Val762Ala polymorphism and cancer risk: evidence from 43 studies. PLoS ONE. 2014;9(1):e87057.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lockett KL, Hall MC, Xu J, Zheng SL, Berwick M, Chuang SC, et al. The ADPRT V762A genetic variant contributes to prostate cancer susceptibility and deficient enzyme function. Cancer Res. 2004;64(17):6344–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Wang XG, Wang ZQ, Tong WM, Shen Y. PARP1 Val762Ala polymorphism reduces enzymatic activity. Biochem Biophys Res Commun. 2007;354(1):122–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Kim IB, Shin H, Garcia AJ, Bunz UH. Use of a folate-PPE conjugate to image cancer cells in vitro. Bioconjug Chem. 2007;18(3):815–20.CrossRefPubMedGoogle Scholar
  21. 21.
    Nguewa PA, Fuertes MA, Valladares B, Alonso C, Perez JM. Poly(ADP-ribose) polymerases: homology, structural domains and functions. Novel therapeutical applications. Prog Biophys Mol Biol. 2005;88(1):143–72.CrossRefPubMedGoogle Scholar
  22. 22.
    Ame JC, Spenlehauer C, de Murcia G. The PARP superfamily. Bioessays. 2004;26(8):882–93.CrossRefPubMedGoogle Scholar
  23. 23.
    Choi JE, Park SH, Jeon HS, Kim KM, Lee GY, Park RW, et al. No association between haplotypes of three variants (codon 81, 284, and 762) in poly(ADP-ribose) polymerase gene and risk of primary lung cancer. Cancer Epidemiol Biomarkers Prev. 2003;12(9):947–9.PubMedGoogle Scholar
  24. 24.
    Krishnakumar R, Gamble MJ, Frizzell KM, Berrocal JG, Kininis M, Kraus WL. Reciprocal binding of PARP-1 and histone H1 at promoters specifies transcriptional outcomes. Science. 2008;319(5864):819–21.CrossRefPubMedGoogle Scholar
  25. 25.
    Swindall AF, Stanley JA, Yang ES. PARP-1: friend or foe of DNA damage and repair in tumorigenesis? Cancers (Basel). 2013;5(3):943–58.CrossRefGoogle Scholar
  26. 26.
    Cao WH, Wang X, Frappart L, Rigal D, Wang ZQ, Shen Y, et al. Analysis of genetic variants of the poly(ADP-ribose) polymerase-1 gene in breast cancer in French patients. Mutat Res. 2007;632(1–2):20–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Brevik A, Joshi AD, Corral R, Onland-Moret NC, Siegmund KD, Le Marchand L, et al. Polymorphisms in base excision repair genes as colorectal cancer risk factors and modifiers of the effect of diets high in red meat. Cancer Epidemiol Biomarkers Prev. 2010;19(12):3167–73.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Bey EA, Bentle MS, Reinicke KE, Dong Y, Yang CR, Girard L, et al. An NQO1- and PARP-1-mediated cell death pathway induced in non-small-cell lung cancer cells by beta-lapachone. Proc Natl Acad Sci U S A. 2007;104(28):11832–7.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Shiokawa M, Masutani M, Fujihara H, Ueki K, Nishikawa R, Sugimura T, et al. Genetic alteration of poly(ADP-ribose) polymerase-1 in human germ cell tumors. Jpn J Clin Oncol. 2005;35(2):97–102.CrossRefPubMedGoogle Scholar
  30. 30.
    Pabalan N, Francisco-Pabalan O, Jarjanazi H, Li H, Sung L, Ozcelik H. Racial and tissue-specific cancer risk associated with PARP1 (ADPRT) Val762Ala polymorphism: a meta-analysis. Mol Biol Rep. 2012;39(12):11061–72.CrossRefPubMedGoogle Scholar
  31. 31.
    Tang LY, Chen LJ, Qi ML, Su Y, Su FX, Lin Y, et al. Effects of passive smoking on breast cancer risk in pre/post-menopausal women as modified by polymorphisms of PARP1 and ESR1. Gene. 2013;524(2):84–9.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Ping Yu
    • 1
  • Yun-Peng Liu
    • 1
  • Jing-Dong Zhang
    • 1
  • Xiu-Juan Qu
    • 1
  • Bo Jin
    • 1
  • Ye Zhang
    • 1
  1. 1.Department of Medical OncologyThe First Hospital of China Medical UniversityShenyangPeople’s Republic of China

Personalised recommendations