Skip to main content

Advertisement

Log in

Cytoglobin in tumor hypoxia: novel insights into cancer suppression

  • Review
  • Published:
Tumor Biology

Abstract

Emerging new and intriguing roles of cytoglobin (Cygb) have attracted considerable attention of cancer researchers in recent years. Hypoxic upregulation of Cygb as well as its altered expression in various human cancers suggest another possible role of this newly discovered globin in tumor cell response under low oxygen tension. Since tumor hypoxia is strongly associated with malignant progression of disease and poor treatment response, it constitutes an area of paramount importance for rational design of cancer selective therapies. However, the mechanisms involved during this process are still elusive. This review outlines the current understanding of Cygb’s involvement in tumor hypoxia and discusses its role in tumorigenesis. A better perception of Cygb in tumor hypoxia response is likely to open novel perspectives for future tumor therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hӧckel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst. 2001;93:266–76.

    Article  Google Scholar 

  2. Koong AC, Chen EY, Mivechi NF, Denko NC, Stambrook P, Giaccia AJ. Hypoxic activation of nuclear factor-kappa B is mediated by a Ras and Raf signaling pathway and does not involve MAP kinase (ERK1 or ERK2). Cancer Res. 1994;54:5273–9.

    CAS  PubMed  Google Scholar 

  3. Hӧckel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupel P. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res. 1996;56:4509–15.

    Google Scholar 

  4. Brizel DM, Scully SP, Harrelson JM, Layfield LJ, Bean JM, Prosnitz LR, et al. Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res. 1996;56:941–3.

    CAS  PubMed  Google Scholar 

  5. Ensley JF, Jacobs JR, Weaver A, Kinzie J, Crissman J, Kish JA, et al. Correlation between response to cisplatinum–combination chemotherapy and subsequent radiotherapy in previously untreated patients with advanced squamous cell cancers of the head and neck. Cancer. 1984;54:811–4.

    Article  CAS  PubMed  Google Scholar 

  6. Grau C, Overgaard J. Effect of cancer chemotherapy on the hypoxic fraction of a solid tumor measured using a local tumor control assay. Radiother Oncol. 1988;13:301–9.

    Article  CAS  PubMed  Google Scholar 

  7. Jaulerry C, Rodriguez J, Brunin F, Jouve M, Mosseri V, Point D, et al. Induction chemotherapy in advanced head and neck tumors: results of two randomized trials. Int J Radiat Oncol Biol Phys. 1992;23:483–9.

    Article  CAS  PubMed  Google Scholar 

  8. Teicher BA, Holden SA, al-Achi A, Herman TS. Classification of antineoplastic treatments by their differential toxicity toward putative oxygenated and hypoxic tumor subpopulations in vivo in the FSaIIC murine fibrosarcoma. Cancer Res. 1990;50:3339–44.

    CAS  PubMed  Google Scholar 

  9. Brizel DM, Sibley GS, Prosnitz LR, Scher RL, Dewhirst MW. Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int J Radiat Oncol Biol Phys. 1997;38:285–9.

    Article  CAS  PubMed  Google Scholar 

  10. Gatenby RA, Kessler HB, Rosenblum JS, Coia LR, Moldofsky PJ, Hartz WH, et al. Oxygen distribution in squamous cell carcinoma metastases and its relationship to outcome of radiation therapy. Int J Radiat Oncol Biol Phys. 1988;14:831–8.

    Article  CAS  PubMed  Google Scholar 

  11. Moulder JE, Rockwell S. Tumor hypoxia: its impact on cancer therapy. Cancer Metastasis Rev. 1987;5:313–41.

    Article  CAS  PubMed  Google Scholar 

  12. Nordsmark M, Overgaard M, Overgaard J. Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother Oncol. 1996;41:31–9.

    Article  CAS  PubMed  Google Scholar 

  13. Gray LH. The initiation and development of cellular damage by ionizing radiations; the thirty-second Silvanus Thompson Memorial Lecture. Br J Radiol. 1953;26:609–18.

    Article  CAS  PubMed  Google Scholar 

  14. Gray LH, Conger AD, Ebert M, Hornsey S, Scott OC. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol. 1953;26:638–48.

    Article  CAS  PubMed  Google Scholar 

  15. Thomlinson RH, Gray LH. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer. 1955;9:539–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Mottram J. A factor of importance in the radio sensitivity of tumours. Br J Radiol. 1936;9:606–14.

    Article  Google Scholar 

  17. Burmester T, Ebner B, Weich B, Hankeln T. Cytoglobin: a novel globin type ubiquitously expressed in vertebrate tissues. Mol Biol Evol. 2002;19:416–21.

    Article  CAS  PubMed  Google Scholar 

  18. Trent 3rd JT, Hargrove MS. A ubiquitously expressed human hexacoordinate hemoglobin. J Biol Chem. 2002;277:19538–45.

    Article  CAS  PubMed  Google Scholar 

  19. Kawada N, Kristensen DB, Asahina K, Nakatani K, Minamiyama Y, Seki S, et al. Characterization of a stellate cell activation-associated protein (STAP) with peroxidase activity found in rat hepatic stellate cells. J Biol Chem. 2001;276:25318–23.

    Article  CAS  PubMed  Google Scholar 

  20. Fago A, Hundahl C, Dewilde S, Gilany K, Moens L, Weber RE. Allosteric regulation and temperature dependence of oxygen binding in human neuroglobin and cytoglobin. Molecular mechanisms and physiological significance. J Biol Chem. 2004;279:44417–26.

    Article  CAS  PubMed  Google Scholar 

  21. Burmester T, Haberkamp M, Mitz S, Roesner A, Schmidt M, Ebner B, et al. Neuroglobin and cytoglobin: genes, proteins and evolution. IUBMB Life. 2004;56:703–7.

    Article  CAS  PubMed  Google Scholar 

  22. Hankeln T, Ebner B, Fuchs C, Gerlach F, Haberkamp M, Laufs TL, et al. Neuroglobin and cytoglobin in search of their role in the vertebrate globin family. J Inorg Biochem. 2005;99:110–9.

    Article  CAS  PubMed  Google Scholar 

  23. Wystub S, Ebner B, Fuchs C, Weich B, Burmester T, Hankeln T. Interspecies comparison of neuroglobin, cytoglobin and myoglobin: sequence evolution and candidate regulatory elements. Cytogenet Genome Res. 2004;105:65–78.

    Article  CAS  PubMed  Google Scholar 

  24. Fuchs C, Luckhardt A, Gerlach F, Burmester T, Hankeln T. Duplicated cytoglobin genes in teleost fishes. Biochem Biophys Res Commun. 2005;337:216–23.

    Article  CAS  PubMed  Google Scholar 

  25. Hamdane D, Kiger L, Dewilde S, Green BN, Pesce A, Uzan J, et al. The redox state of the cell regulates the ligand binding affinity of human neuroglobin and cytoglobin. J Biol Chem. 2003;278:51713–21.

    Article  CAS  PubMed  Google Scholar 

  26. de Sanctis D, Dewilde S, Pesce A, Moens L, Ascenzi P, Hankeln T, et al. Crystal structure of cytoglobin: the fourth globin type discovered in man displays heme hexa-coordination. J Mol Biol. 2004;336:917–27.

    Article  PubMed  CAS  Google Scholar 

  27. Hamdane D, Kiger L, Dewilde S, Uzan J, Burmester T, Hankeln T, et al. Hyperthermal stability of neuroglobin and cytoglobin. FEBS J. 2005;272:2076–84.

    Article  CAS  PubMed  Google Scholar 

  28. Schmidt M, Gerlach F, Avivi A, Laufs T, Wystub S, Simpson JC, et al. Cytoglobin is a respiratory protein in connective tissue and neurons, which is up-regulated by hypoxia. J Biol Chem. 2004;279:8063–9.

    Article  CAS  PubMed  Google Scholar 

  29. Mammen PP, Shelton JM, Ye Q, Kanatous SB, McGrath AJ, Richardson JA, et al. Cytoglobin is a stress-responsive hemoprotein expressed in the developing and adult brain. J Histochem Cytochem. 2006;54:1349–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Nakatani K, Okuyama H, Shimahara Y, Saeki S, Kim DH, Nakajima Y, et al. Cytoglobin/STAP, its unique localization in splanchnic fibroblast-like cells and function in organ fibrogenesis. Lab Investig. 2004;84:91–101.

    Article  CAS  PubMed  Google Scholar 

  31. Tateaki Y, Ogawa T, Kawada N, Kohashi T, Arihiro K, Tateno C, et al. Typing of hepatic nonparenchymal cells using fibulin-2 and cytoglobin/STAP as liver fibrogenesis-related markers. Histochem Cell Biol. 2004;122:41–9.

    Article  CAS  PubMed  Google Scholar 

  32. Geuens E, Brouns I, Flamez D, Dewilde S, Timmermans JP, Moens L. A globin in the nucleus! J Biol Chem. 2003;278:30417–20.

    Article  CAS  PubMed  Google Scholar 

  33. Li H, Hemann C, Abdelghany TM, El-Mahdy MA, Zweier JL. Characterization of the mechanism and magnitude of cytoglobin-mediated nitrite reduction and nitric oxide generation under anaerobic conditions. J Biol Chem. 2012;287:36623–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Avivi A, Gerlach F, Joel A, Reuss S, Burmester T, Nevo E, et al. Neuroglobin, cytoglobin, and myoglobin contribute to hypoxia adaptation of the subterranean mole rat Spalax. Proc Natl Acad Sci U S A. 2010;107:21570–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Basu A, Drame A, Munoz R, Gijsbers R, Debyser Z, De Leon M, et al. Pathway specific gene expression profiling reveals oxidative stress genes potentially regulated by transcription co-activator LEDGF/p75 in prostate cancer cells. Prostate. 2012;72:597–611.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Chua PJ, Yip GW, Bay BH. Cell cycle arrest induced by hydrogen peroxide is associated with modulation of oxidative stress related genes in breast cancer cells. Exp Biol Med (Maywood). 2009;234:1086–94.

    Article  CAS  Google Scholar 

  37. Fordel E, Geuens E, Dewilde S, De Coen W, Moens L. Hypoxia/ischemia and the regulation of neuroglobin and cytoglobin expression. IUBMB Life. 2004;56:681–7.

    Article  CAS  PubMed  Google Scholar 

  38. Fordel E, Geuens E, Dewilde S, Rottiers P, Carmeliet P, Grooten J, et al. Cytoglobin expression is upregulated in all tissues upon hypoxia: an in vitro and in vivo study by quantitative real-time PCR. Biochem Biophys Res Commun. 2004;319:342–8.

    Article  CAS  PubMed  Google Scholar 

  39. Sawai H, Kawada N, Yoshizato K, Nakajima H, Aono S, Shiro Y. Characterization of the heme environmental structure of cytoglobin, a fourth globin in humans. Biochemistry. 2003;42:5133–42.

    Article  CAS  PubMed  Google Scholar 

  40. Gardner AM, Cook MR, Gardner PR. Nitric-oxide dioxygenase function of human cytoglobin with cellular reductants and in rat hepatocytes. J Biol Chem. 2010;285:23850–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Hodges NJ, Innocent N, Dhanda S, Graham M. Cellular protection from oxidative DNA damage by over-expression of the novel globin cytoglobin in vitro. Mutagenesis. 2008;23:293–8.

    Article  CAS  PubMed  Google Scholar 

  42. Fordel E, Thijs L, Moens L, Dewilde S. Neuroglobin and cytoglobin expression in mice. Evidence for a correlation with reactive oxygen species scavenging. FEBS J. 2007;274:1312–7.

    Article  CAS  PubMed  Google Scholar 

  43. Fang J, Ma I, Allalunis-Turner J. Knockdown of cytoglobin expression sensitizes human glioma cells to radiation and oxidative stress. Radiat Res. 2011;176:198–207.

    Article  CAS  PubMed  Google Scholar 

  44. Li D, Chen XQ, Li WJ, Yang YH, Wang JZ, Yu AC. Cytoglobin up-regulated by hydrogen peroxide plays a protective role in oxidative stress. Neurochem Res. 2007;32:1375–80.

    Article  CAS  PubMed  Google Scholar 

  45. Xu R, Harrison PM, Chen M, Li L, Tsui TY, Fung PC, et al. Cytoglobin overexpression protects against damage-induced fibrosis. Mol Ther. 2006;13:1093–100.

    Article  CAS  PubMed  Google Scholar 

  46. Mimura I, Nangaku M, Nishi H, Inagi R, Tanaka T, Fujita T. Cytoglobin, a novel globin, plays an antifibrotic role in the kidney. Am J Physiol Renal Physiol. 2010;299:F1120–33.

    Article  CAS  PubMed  Google Scholar 

  47. Oleksiewicz U, Liloglou T, Field JK, Xinarianos G. Cytoglobin: biochemical, functional and clinical perspective of the newest member of the globin family. Cell Mol Life Sci. 2011;68:3869–83.

    Article  CAS  PubMed  Google Scholar 

  48. Ostojic J, Sakaguchi DS, de Lathouder Y, Hargrove MS, Trent 3rd JT, Kwon YH, et al. Neuroglobin and cytoglobin: oxygen-binding proteins in retinal neurons. Invest Ophthalmol Vis Sci. 2006;47:1016–23.

    Article  PubMed  Google Scholar 

  49. Man KN, Philipsen S, Tan-Un KC. Localization and expression pattern of cytoglobin in carbon tetrachloride-induced liver fibrosis. Toxicol Lett. 2008;183:36–44.

    Article  CAS  PubMed  Google Scholar 

  50. McRonald FE, Liloglou T, Xinarianos G, Hill L, Rowbottom L, Langan JE, et al. Down-regulation of the cytoglobin gene, located on 17q25, in tylosis with oesophageal cancer (TOC): evidence for trans-allele repression. Hum Mol Genet. 2006;15:1271–7.

    Article  CAS  PubMed  Google Scholar 

  51. Hedley-Whyte ET, Goldman JE, Nedergaard M, Friedman A, Han X, Schmidt RE, et al. Hyaline protoplasmic astrocytopathy of neocortex. J Neuropathol Exp Neurol. 2009;68:136–47.

    Article  PubMed  Google Scholar 

  52. Powers JM. p53-mediated apoptosis, neuroglobin overexpression, and globin deposits in a patient with hereditary ferritinopathy. J Neuropathol Exp Neurol. 2006;65:716–21.

    Article  CAS  PubMed  Google Scholar 

  53. Presneau N, Dewar K, Forgetta V, Provencher D, Mes-Masson AM, Tonin PN. Loss of heterozygosity and transcriptome analyses of a 1.2 Mb candidate ovarian cancer tumor suppressor locus region at 17q25.1-q25.2. Mol Carcinog. 2005;43:141–54.

    Article  CAS  PubMed  Google Scholar 

  54. Xinarianos G, McRonald FE, Risk JM, Bowers NL, Nikolaidis G, Field JK, et al. Frequent genetic and epigenetic abnormalities contribute to the deregulation of cytoglobin in non-small cell lung cancer. Hum Mol Genet. 2006;15:2038–44.

    Article  CAS  PubMed  Google Scholar 

  55. Tanaka F, Tominaga K, Sasaki E, Sogawa M, Yamagami H, Tanigawa T, et al. Cytoglobin may be involved in the healing process of gastric mucosal injuries in the late phase without angiogenesis. Dig Dis Sci. 2013;58:1198–206.

    Article  CAS  PubMed  Google Scholar 

  56. Iliopoulos O. Genetic disorders of endocrine neoplasia. von Hippel-Lindau disease: genetic and clinical observation. Front Horm Res. 2001;28:131–66.

    Article  CAS  PubMed  Google Scholar 

  57. Lechauve C, Chauvierre C, Dewilde S, Moens L, Green BN, Marden MC, et al. Cytoglobin conformations and disulfide bond formation. FEBS J. 2010;277:2696–704.

    Article  CAS  PubMed  Google Scholar 

  58. Singh S, Manda SM, Sikder D, Birrer MJ, Rothermel BA, Garry DJ, et al. Calcineurin activates cytoglobin transcription in hypoxic myocytes. J Biol Chem. 2009;284:10409–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Schmidt M, Laufs T, Reuss S, Hankeln T, Burmester T. Divergent distribution of cytoglobin and neuroglobin in the murine eye. Neurosci Lett. 2005;374:207–11.

    Article  CAS  PubMed  Google Scholar 

  60. Guo X, Philipsen S, Tan-Un K-C. Study of the hypoxia-dependent regulation of human <i>CYGB</i> gene. Biochem Biophys Res Commun. 2007;364:145–50.

    Article  CAS  PubMed  Google Scholar 

  61. Emara M, Turner AR, Allalunis-Turner J. Hypoxic regulation of cytoglobin and neuroglobin expression in human normal and tumor tissues. Cancer Cell Int. 2010;10:1–16.

    Article  CAS  Google Scholar 

  62. Shaw R, Omar M, Rokadiya S, Kogera F, Lowe D, Hall G, et al. Cytoglobin is upregulated by tumour hypoxia and silenced by promoter hypermethylation in head and neck cancer. Br J Cancer. 2009;101:139–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Kugelstadt D, Haberkamp M, Hankeln T, Burmester T. Neuroglobin, cytoglobin, and a novel, eye-specific globin from chicken. Biochem Biophys Res Commun. 2004;325:719–25.

    Article  CAS  PubMed  Google Scholar 

  64. Guo X, Philipsen S, Tan-Un KC. Characterization of human cytoglobin gene promoter region. Biochim Biophys Acta. 2006;1759:208–15.

    Article  CAS  PubMed  Google Scholar 

  65. Tian SF, Yang HH, Xiao DP, Huang YJ, He GY, Ma HR, et al. Mechanisms of neuroprotection from hypoxia-ischemia (HI) brain injury by up-regulation of cytoglobin (CYGB) in a neonatal rat model. J Biol Chem. 2013;288:15988–6003.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Emara M, Turner AR, Allalunis-Turner J. Hypoxic regulation of cytoglobin and neuroglobin expression in human normal and tumor tissues. Cancer Cell Int. 2010;10:33–49.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  67. Shivapurkar N, Stastny V, Okumura N, Girard L, Xie Y, Prinsen C, et al. Cytoglobin, the newest member of the globin family, functions as a tumor suppressor gene. Cancer Res. 2008;68:7448–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Oleksiewicz U, Liloglou T, Tasopoulou KM, Daskoulidou N, Bryan J, Gosney JR, et al. Cytoglobin has bimodal: tumour suppressor and oncogene functions in lung cancer cell lines. Hum Mol Genet. 2013;22:3207–17.

    Article  CAS  PubMed  Google Scholar 

  69. Bicker A, Dietrich D, Gleixner E, Kristiansen G, Gorr TA, Hankeln T. Extensive transcriptional complexity during hypoxia-regulated expression of the myoglobin gene in cancer. Hum Mol Genet. 2014;23:479–90.

    Article  CAS  PubMed  Google Scholar 

  70. Galluzzo M, Pennacchietti S, Rosano S, Comoglio PM, Michieli P. Prevention of hypoxia by myoglobin expression in human tumor cells promotes differentiation and inhibits metastasis. J Clin Invest. 2009;119:865–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. McRonald FE, Risk JM, Hodges NJ. Protection from intracellular oxidative stress by cytoglobin in normal and cancerous oesophageal cells. PLoS ONE. 2012;7:e30587.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Derdak Z, Mark NM, Beldi G, Robson SC, Wands JR, Baffy G. The mitochondrial uncoupling protein-2 promotes chemoresistance in cancer cells. Cancer Res. 2008;68:2813–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Suzuki M, Sunaga N, Shames DS, Toyooka S, Gazdar AF, Minna JD. RNA interference-mediated knockdown of DNA methyltransferase 1 leads to promoter demethylation and gene re-expression in human lung and breast cancer cells. Cancer Res. 2004;64:3137–43.

    Article  CAS  PubMed  Google Scholar 

  74. Ogawa T, Iizuka M, Sekiya Y, Yoshizato K, Ikeda K, Kawada N. Suppression of type I collagen production by microRNA-29b in cultured human stellate cells. Biochem Biophys Res Commun. 2010;391:316–21.

    Article  CAS  PubMed  Google Scholar 

  75. Chen X, Wang K, Chen J, Guo J, Yin Y, Cai X, et al. In vitro evidence suggests that miR-133a-mediated regulation of uncoupling protein 2 (UCP2) is an indispensable step in myogenic differentiation. J Biol Chem. 2009;284:5362–9.

    Article  CAS  PubMed  Google Scholar 

  76. Tao J, Wu D, Xu B, Qian W, Li P, Lu Q, et al. microRNA-133 inhibits cell proliferation, migration and invasion in prostate cancer cells by targeting the epidermal growth factor receptor. Oncol Rep. 2012;27:1967–75.

    CAS  PubMed  Google Scholar 

  77. Yamamoto N, Kinoshita T, Nohata N, Yoshino H, Itesako T, Fujimura L, et al. Tumor-suppressive microRNA-29a inhibits cancer cell migration and invasion via targeting HSP47 in cervical squamous cell carcinoma. Int J Oncol. 2013;43:1855–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Maisonneuve P, Marshall BC, Lowenfels AB. Risk of pancreatic cancer in patients with cystic fibrosis. Gut. 2007;56:1327–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Park J, Kim DS, Shim TS, Lim CM, Koh Y, Lee SD, et al. Lung cancer in patients with idiopathic pulmonary fibrosis. Eur Respir J. 2001;17:1216–9.

    Article  CAS  PubMed  Google Scholar 

  80. Pillai R, Balaram P, Reddiar KS. Pathogenesis of oral submucous fibrosis. Relationship to risk factors associated with oral cancer. Cancer. 1992;69:2011–20.

    Article  CAS  PubMed  Google Scholar 

  81. Motoyama H, Komiya T, Thuy LT, Tamori A, Enomoto M, Morikawa H, et al. Cytoglobin is expressed in hepatic stellate cells, but not in myofibroblasts, in normal and fibrotic human liver. Lab Investig. 2013;94:192–207.

    Article  PubMed  CAS  Google Scholar 

  82. Tacke F, Weiskirchen R. Update on hepatic stellate cells: pathogenic role in liver fibrosis and novel isolation techniques. Exp Rev Gastroenterol Hepatol. 2012;6:67–80.

    Article  CAS  Google Scholar 

  83. Radisky DC, Levy DD, Littlepage LE, Liu H, Nelson CM, Fata JE, et al. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature. 2005;436:123–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Radisky DC, Kenny PA, Bissell MJ. Fibrosis and cancer: do myofibroblasts come also from epithelial cells via EMT? J Cell Biochem. 2007;101:830–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Otranto M, Sarrazy V, Bonte F, Hinz B, Gabbiani G, Desmouliere A. The role of the myofibroblast in tumor stroma remodeling. Cell Adhes Migr. 2012;6:203–19.

    Article  Google Scholar 

  86. Mori K, Shibanuma M, Nose K. Invasive potential induced under long-term oxidative stress in mammary epithelial cells. Cancer Res. 2004;64:7464–72.

    Article  CAS  PubMed  Google Scholar 

  87. Rhyu DY, Yang Y, Ha H, Lee GT, Song JS, Uh ST, et al. Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial-mesenchymal transition in renal tubular epithelial cells. J Am Soc Nephrol. 2005;16:667–75.

    Article  CAS  PubMed  Google Scholar 

  88. Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 2009;28:15–33.

    Article  PubMed  Google Scholar 

  89. Martindale JL, Holbrook NJ. Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol. 2002;192:1–15.

    Article  CAS  PubMed  Google Scholar 

  90. Boonstra J, Post JA. Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene. 2004;337:1–13.

    Article  CAS  PubMed  Google Scholar 

  91. Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med. 2001;30:1191–212.

    Article  CAS  PubMed  Google Scholar 

  92. Perry G, Raina AK, Nunomura A, Wataya T, Sayre LM, Smith MA. How important is oxidative damage? Lessons from Alzheimer’s disease. Free Radic Biol Med. 2000;28:831–4.

    Article  CAS  PubMed  Google Scholar 

  93. Behrend L, Henderson G, Zwacka RM. Reactive oxygen species in oncogenic transformation. Biochem Soc Trans. 2003;31:1441–4.

    Article  CAS  PubMed  Google Scholar 

  94. Wu WS. The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev. 2006;25:695–705.

    Article  CAS  PubMed  Google Scholar 

  95. Magee JA, Piskounova E, Morrison SJ. Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell. 2012;21:283–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN. The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle. 2009;8:3274–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003;9:677–84.

    Article  CAS  PubMed  Google Scholar 

  98. Mohyeldin A, Garzon-Muvdi T, Quinones-Hinojosa A. Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell. 2010;7:150–61.

    Article  CAS  PubMed  Google Scholar 

  99. An WG, Kanekal M, Simon MC, Maltepe E, Blagosklonny MV, Neckers LM. Stabilization of wild-type p53 by hypoxia-inducible factor 1alpha. Nature. 1998;392:405–8.

    Article  CAS  PubMed  Google Scholar 

  100. Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature. 1998;394:485–90.

    Article  CAS  PubMed  Google Scholar 

  101. Halligan KE, Jourd’heuil FL, Jourd’heuil D. Cytoglobin is expressed in the vasculature and regulates cell respiration and proliferation via nitric oxide dioxygenation. J Biol Chem. 2009;284:8539–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Genin O, Rechavi G, Nagler A, Ben-Itzhak O, Nazemi KJ, Pines M. Myofibroblasts in pulmonary and brain metastases of alveolar soft-part sarcoma: a novel target for treatment? Neoplasia. 2008;10:940–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Mediavilla-Varela M, Pacheco FJ, Almaguel F, Perez J, Sahakian E, Daniels TR, et al. Docetaxel-induced prostate cancer cell death involves concomitant activation of caspase and lysosomal pathways and is attenuated by LEDGF/p75. Mol Cancer. 2009;8:68.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  104. Singh S, Canseco DC, Manda SM, Shelton JM, Chirumamilla RR, Goetsch SC, et al. Cytoglobin modulates myogenic progenitor cell viability and muscle regeneration. Proc Natl Acad Sci U S A. 2014;111:E129–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Schumacker PT. Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell. 2006;10:175–6.

    Article  CAS  PubMed  Google Scholar 

  106. Leprivier G, Remke M, Rotblat B, Dubuc A, Mateo AR, Kool M, et al. The eEF2 kinase confers resistance to nutrient deprivation by blocking translation elongation. Cell. 2013;153:1064–79.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Lewis-Tuffin LJ, Rodriguez F, Giannini C, Scheithauer B, Necela BM, Sarkaria JN, et al. Misregulated E-cadherin expression associated with an aggressive brain tumor phenotype. PLoS ONE. 2010;5:e13665.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  108. Vousden KH, Lane DP. p53 in health and disease. Nat Rev Mol Cell Biol. 2007;8:275–83.

    Article  CAS  PubMed  Google Scholar 

  109. Xu HW, Huang YJ, Xie ZY, Lin L, Guo YC, Zhuang ZR, et al. The expression of cytoglobin as a prognostic factor in gliomas: a retrospective analysis of 88 patients. BMC Cancer. 2013;13:247.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

AN is supported by research grants from Department of Science and Technology, Department of Biotechnology, Government of India, R&D grants from University of Delhi, and University Grants Commission (Under SAP Programme). Financial support from DBT for providing fellowship to RJ is also appreciated. The authors wish to thank Dr. Narayana Shivapurkar, Head, Translational Research Laboratory, Lombardi Cancer Center, Georgetown University for generously providing expert comments on the review.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alo Nag.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, S., John, R. & Nag, A. Cytoglobin in tumor hypoxia: novel insights into cancer suppression. Tumor Biol. 35, 6207–6219 (2014). https://doi.org/10.1007/s13277-014-1992-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-1992-z

Keywords

Navigation