Skip to main content

Advertisement

Log in

PAK5-Egr1-MMP2 signaling controls the migration and invasion in breast cancer cell

  • Research Article
  • Published:
Tumor Biology

Abstract

p21-activated kinases (PAKs) are activated by various extracellular stimuli and, in turn, activate other kinases by phosphorylating them at specific serine/threonine residues or through protein–protein interaction. As a recently identified member of the group B PAK family, the role of PAK5 in cancer is poorly understood. In this study, we investigated the effect of PAK5 on the malignant phenotype, such as proliferation, cell cycle, apoptosis, migration, and invasion. Cell growth assay and cell cycle analysis consistently showed that knockdown of PAK5 could significantly inhibit the proliferation of breast cancer cells. Wound healing assay. migration assay, and invasion assay showed that PAK5 promoted cell migration. Furthermore, in order to elucidate the underlying mechanism of PAK5 on cellular growth and migration, we examined the protein expressions of cyclin D1, p21, early growth response protein 1 (Egr1), and matrix metalloproteinase 2 (MMP2). Our work further reveals the PAK5-Egr1-MMP2 signaling pathway to be a critical regulator of cell migration and invasion. These results suggest that PAK5 may be a potential therapeutic target for breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Duffy MJ. Biochemical markers in breast cancer: which ones are clinically useful? Clin Biochem. 2001;34:347–52.

    Article  CAS  PubMed  Google Scholar 

  2. DeSantis C, Siegel R, Bandi P, Jemal A. Breast cancer statistics, 2011. CA Cancer J Clin. 2011;61:409–18.

    Article  PubMed  Google Scholar 

  3. Sells MA, Knaus UG, Bagrodia S, Ambrose DM, Bokoch GM, Chernoff J. Human p21-activated kinase (Pak1) regulates actin organization in mammalian cells. Curr Biol. 1997;7:202–10.

    Article  CAS  PubMed  Google Scholar 

  4. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, et al. Cell migration: integrating signals from front to back. Science. 2003;302:1704–9.

    Article  CAS  PubMed  Google Scholar 

  5. Sells MA, Boyd JT, Chernoff J. P21-activated kinase 1 (PAK1) regulates cell motility in mammalian fibroblasts. J Cell Biol. 1999;145:837–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Jaffer ZM, Chernoff J. P21-activated kinases: three more join the Pak. Int J Biochem Cell Biol. 2002;34:713–7.

    Article  CAS  PubMed  Google Scholar 

  7. Dutartre H, Davoust J, Gorvel JP, Chavrier P. Cytokinesis arrest and redistribution of actin-cytoskeleton regulatory components in cells expressing the Rho GTPase CDC42HS. J Cell Sci. 1996;109(Pt 2):367–77.

    CAS  PubMed  Google Scholar 

  8. Li X, Minden A. Targeted disruption of the gene for the PAK5 kinase in mice. Mol Cell Biol. 2003;23:7134–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Gong W, An Z, Wang Y, Pan X, Fang W, Jiang B, et al. P21-activated kinase 5 is overexpressed during colorectal cancer progression and regulates colorectal carcinoma cell adhesion and migration. Int J Cancer. 2009;125:548–55.

    Article  CAS  PubMed  Google Scholar 

  10. Cotteret S, Jaffer ZM, Beeser A, Chernoff J. p21-Activated kinase 5 (Pak5) localizes to mitochondria and inhibits apoptosis by phosphorylating BAD. Mol Cell Biol. 2003;23:5526–39.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Hangen E, Blomgren K, Benit P, Kroemer G, Modjtahedi N. Life with or without AIF. Trends Biochem Sci. 2010;35:278–87.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang H, Li Z, Viklund EK, Stromblad S. P21-activated kinase 4 interacts with integrin alpha v beta 5 and regulates alpha v beta 5-mediated cell migration. J Cell Biol. 2002;158:1287–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Thiel G, Cibelli G. Regulation of life and death by the zinc finger transcription factor Egr-1. J Cell Physiol. 2002;193:287–92.

    Article  CAS  PubMed  Google Scholar 

  14. Zcharia E, Atzmon R, Nagler A, Shimoni A, Peretz T, Vlodavsky I. Inhibition of matrix metalloproteinase-2 by halofuginone is mediated by the Egr1 transcription factor. Anticancer Drugs. 2012;23:1022–31.

    Article  CAS  PubMed  Google Scholar 

  15. Timm T, Matenia D, Li XY, Griesshaber B, Mandelkow EM. Signaling from MARK to tau: regulation, cytoskeletal crosstalk, and pathological phosphorylation. Neurodegener Dis. 2006;3:207–17.

    Article  CAS  PubMed  Google Scholar 

  16. Callow MG, Clairvoyant F, Zhu S, Schryver B, Whyte DB, Bischoff JR, et al. Requirement for PAK4 in the anchorage-independent growth of human cancer cell lines. J Biol Chem. 2002;277:550–8.

    Article  CAS  PubMed  Google Scholar 

  17. Lee SR, Ramos SM, Ko A, Masiello D, Swanson KD, Lu ML, et al. AR and ER interaction with a p21-activated kinase (PAK6). Mol Endocrinol. 2002;16:85–99.

    Article  CAS  PubMed  Google Scholar 

  18. Yang F, Li X, Sharma M, Zarnegar M, Lim B, Sun Z. Androgen receptor specifically interacts with a novel p21-activated kinase, PAK6. J Biol Chem. 2001;276:15345–53.

    Article  CAS  PubMed  Google Scholar 

  19. Pandey A, Dan I, Kristiansen TZ, Watanabe NM, Voldby J, Kajikawa E, et al. Cloning and characterization of PAK5, a novel member of mammalian p21-activated kinase-II subfamily that is predominantly expressed in brain. Oncogene. 2002;21:3939–48.

    Article  CAS  PubMed  Google Scholar 

  20. Tsang CM, Yip YL, Lo KW, Deng W, To KF, Hau PM, et al. Cyclin D1 overexpression supports stable EBV infection in nasopharyngeal epithelial cells. Proc Natl Acad Sci U S A. 2012;109:E3473–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Ferraz C, Lorenz S, Wojtas B, Bornstein SR, Paschke R, Eszlinger M. Inverse correlation of miRNA and cell cycle-associated genes suggests influence of miRNA on benign thyroid nodule tumorigenesis. J Clin Endocrinol Metab. 2013;98:E8–16.

    Article  CAS  PubMed  Google Scholar 

  22. Zhuo W, Zhang L, Wang Y, Zhu B, Chen Z. Cyclin D1 G870A polymorphism is a risk factor for esophageal cancer among Asians. Cancer Invest. 2012;30:630–6.

    Article  CAS  PubMed  Google Scholar 

  23. Vizkeleti L, Ecsedi S, Rakosy Z, Orosz A, Lazar V, Emri G, et al. The role of CCND1 alterations during the progression of cutaneous malignant melanoma. Tumour Biol. 2012;33:2189–99.

    Article  CAS  PubMed  Google Scholar 

  24. Lee MH, Yang HY. Regulators of G1 cyclin-dependent kinases and cancers. Cancer Metastasis Rev. 2003;22:435–49.

    Article  CAS  PubMed  Google Scholar 

  25. Wang X, Gong W, Qing H, Geng Y, Zhang Y, Peng L, et al. p21-activated kinase 5 inhibits camptothecin-induced apoptosis in colorectal carcinoma cells. Tumour Biol. 2010;31:575–82.

    Article  CAS  PubMed  Google Scholar 

  26. Guo Y, Srinivasula SM, Druilhe A, Fernandes-Alnemri T, Alnemri ES. Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J Biol Chem. 2002;277:13430–7.

    Article  CAS  PubMed  Google Scholar 

  27. Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Litwack G, Alnemri ES. Molecular ordering of the Fas-apoptotic pathway: the Fas/APO-1 protease Mch5 is a CrmA-inhibitable protease that activates multiple Ced-3/ICE-like cysteine proteases. Proc Natl Acad Sci U S A. 1996;93:14486–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Dan C, Nath N, Liberto M, Minden A. PAK5, a new brain-specific kinase, promotes neurite outgrowth in N1E-115 cells. Mol Cell Biol. 2002;22:567–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Matenia D, Griesshaber B, Li XY, Thiessen A, Johne C, Jiao J, et al. PAK5 kinase is an inhibitor of MARK/Par-1, which leads to stable microtubules and dynamic actin. Mol Biol Cell. 2005;16:4410–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Rosenberg GA. Matrix metalloproteinases in brain injury. J Neurotrauma. 1995;12:833–42.

    Article  CAS  PubMed  Google Scholar 

  31. Ray JM, Stetler-Stevenson WG. The role of matrix metalloproteases and their inhibitors in tumour invasion, metastasis and angiogenesis. Eur Respir J. 1994;7:2062–72.

    CAS  PubMed  Google Scholar 

  32. Stetler-Stevenson WG. Type IV collagenases in tumor invasion and metastasis. Cancer Metastasis Rev. 1990;9:289–303.

    Article  CAS  PubMed  Google Scholar 

  33. Woessner Jr JF, Gunja-Smith Z. Role of metalloproteinases in human osteoarthritis. J Rheumatol Suppl. 1991;27:99–101.

    PubMed  Google Scholar 

  34. Chambers AF, Matrisian LM. Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst. 1997;89:1260–70.

    Article  CAS  PubMed  Google Scholar 

  35. Komatsu K, Nakanishi Y, Nemoto N, Hori T, Sawada T, Kobayashi M. Expression and quantitative analysis of matrix metalloproteinase-2 and −9 in human gliomas. Brain Tumor Pathol. 2004;21:105–12.

    Article  CAS  PubMed  Google Scholar 

  36. Wang M, Wang T, Liu S, Yoshida D, Teramoto A. The expression of matrix metalloproteinase-2 and −9 in human gliomas of different pathological grades. Brain Tumor Pathol. 2003;20:65–72.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This project is supported by grants from the key project of the Education Department of China (212062) and the Program for New Century Excellent Talents in University (NCET-08-0700).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong-Sheng Pei or Jun-Nian Zheng.

Additional information

Xiao-Xia Wang, Qian Cheng, and Shang-Nuan Zhang contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, XX., Cheng, Q., Zhang, SN. et al. PAK5-Egr1-MMP2 signaling controls the migration and invasion in breast cancer cell. Tumor Biol. 34, 2721–2729 (2013). https://doi.org/10.1007/s13277-013-0824-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-0824-x

Keywords

Navigation