Skip to main content

Advertisement

Log in

Optimization of apparent diffusion coefficient measured by diffusion-weighted MRI for diagnosis of breast lesions presenting as mass and non-mass-like enhancement

  • Research Article
  • Published:
Tumor Biology

Abstract

The purpose of this study was to investigate the diagnostic value of the apparent diffusion coefficient (ADC), measured by diffusion-weighted magnetic resonance imaging (MRI), for the diagnosis of breast lesions presenting as mass and non-mass-like enhancement (NMLE). The breast MRI studies of 174 patients were reviewed retrospectively. A total of 188 histologically confirmed lesions were analyzed and classified into 127 mass enhancement (86 malignant and 41 benign) and 61 NMLE (42 malignant and 19 benign). The ADC values were measured using a spin-echo echo-planner-imaging (SE-EPI) sequence with b = 1,000 s/mm2. Diagnostic performance was evaluated using receiver operating characteristic (ROC) analysis. The mean ADC was 0.99 ± 0.22 × 10−3 mm2/s for invasive cancer, 1.23 ± 0.33 × 10−3 mm2/s for ductal carcinoma in situ (DCIS), and 1.52 ± 0.35 × 10−3 mm2/s for benign adenosis. The mean ADC of all NMLE lesions was 1.44 ± 0.41 × 10−3 mm2/s, which is higher than the mean ADC of all mass lesions, 1.12 ± 0.33 × 10−3 mm2/s. In the ROC analysis, the optimal cutoff ADC value for differentiating benign from malignant lesions was 1.05 × 10−3 mm2/s for mass lesions and 1.35 × 10−3 mm2/s for NMLE. In conclusion, ADC values can be used for the diagnosis of invasive and DCIS as well as benign tumors. The NMLE lesions tend to have higher ADC values than mass lesions; therefore, the morphological appearance of a lesion needs to be considered when using the ADC value for diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Guo Y, Cai YQ, Cai ZL, Gao YG, An NY, Ma L, et al. Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J Magn Reson Imaging. 2002;16:172–8.

    Article  PubMed  Google Scholar 

  2. Yuan J, Mei CS, Panych LP, McDannold NJ, Madore B. Towards fast and accurate temperature mapping with proton resonance frequency-based MR thermometry. Quant Imaging Med Surg. 2012;2:21–32.

    PubMed  Google Scholar 

  3. Cheng L, Li X. Breast Imaging Reporting and Data System (BI-RADS) of magnetics resonance imaging: breast mass. Gland Surg. 2012;1:62–74.

    Google Scholar 

  4. Ishikawa T, Shimizu D, Kito A, Ota I, Sasaki T, Tanabe M, et al. Breast cancer manifested by hematologic disorders. J Thorac Dis. 2012;4:650–4.

    PubMed  Google Scholar 

  5. Cheng L, Li X. Breast magnetic resonance imaging: focus/foci. Gland Surg. 2012;1:136–8.

    Google Scholar 

  6. Winston GP. The physical and biological basis of quantitative parameters derived from diffusion MRI. Quant Imaging Med Surg. 2012;2:254–65.

    PubMed  Google Scholar 

  7. Partridge SC, DeMartini WB, Kurland BF, Eby PR, White SW, Lehman CD. Quantitative diffusion-weighted imaging as an adjunct to conventional breast MRI for improved positive predictive value. AJR Am J Roentgenol. 2009;193:1716–22.

    Article  PubMed  Google Scholar 

  8. Ei Khouli RH, Jacobs MA, Mezban SD, Huang P, Kamel IR, Macura KJ, et al. Diffusion-weighted imaging improves the diagnostic accuracy of conventional 3.0-T breast MR imaging. Radiology. 2010;256:64–73.

    Article  PubMed  Google Scholar 

  9. Partridge SC, Demartini WB, Kurland BF, Eby PR, White SW, Lehman CD. Differential diagnosis of mammographically and clinically occult breast lesions on diffusion-weighted MRI. J Magn Reson Imaging. 2010;31:562–70.

    Article  PubMed  Google Scholar 

  10. Partridge SC, Mullins CD, Kurland BF, Allain MD, DeMartini WB, Eby PR, et al. Apparent diffusion coefficient values for discriminating benign and malignant breast MRI lesions: effects of lesion type and size. AJR Am J Roentgenol. 2010;194:1664–73.

    Article  PubMed  Google Scholar 

  11. Yabuuchi H, Matsuo Y, Okafuji T, Kamitani T, Soeda H, Setoguchi T, et al. Enhanced mass on contrast-enhanced breast MR imaging: lesion characterization using combination of dynamic contrast-enhanced and diffusion-weighted MR images. J Magn Reson Imaging. 2008;28:1157–65.

    Article  PubMed  Google Scholar 

  12. Yabuuchi H, Matsuo Y, Kamitani T, Setoguchi T, Okafuji T, Soeda H, et al. Non-mass-like enhancement on contrast-enhanced breast MR imaging: lesion characterization using combination of dynamic contrast-enhanced and diffusion-weighted MR images. Eur J Radiol. 2010;75:e126–32. doi:10.1016/j.ejrad.2009.09.013.

    Article  PubMed  Google Scholar 

  13. Kuroki-Suzuki S, Kuroki Y, Nasu K, Nawano S, Moriyama N, Okazaki M. Detecting breast cancer with non-contrast MR imaging: combining diffusion-weighted and STIR imaging. Magn Reson Med Sci. 2007;6:21–7.

    Article  PubMed  Google Scholar 

  14. Baltzer PA, Benndorf M, Dietzel M, Gajda M, Camara O, Kaiser WA. Sensitivity and specificity of unenhanced MR mammography (DWI combined with T2-weighted TSE imaging, ueMRM) for the differentiation of mass lesions. Eur Radiol. 2010;20:1101–10. doi:10.1007/s00330-009-1654-5.

    Article  PubMed  Google Scholar 

  15. Woodhams R, Matsunaga K, Iwabuchi K, Kan S, Hata H, Kuranami M, et al. Diffusion-weighted imaging of malignant breast tumors: the usefulness of apparent diffusion coefficient (ADC) value and ADC map for the detection of malignant breast tumors and evaluation of cancer extension. J Comput Assist Tomogr. 2005;29:644–9.

    Article  PubMed  Google Scholar 

  16. Yoshikawa MI, Ohsumi S, Sugata S, Kataoka M, Takashima S, Mochizuki T, et al. Relation between cancer cellularity and apparent diffusion coefficient values using diffusion-weighted magnetic resonance imaging in breast cancer. Radiat Med. 2008;26:222–6. doi:10.1007/s11604-007-0218-3.

    Article  PubMed  Google Scholar 

  17. Imamura T, Isomoto I, Sueyoshi E, Yano H, Uga T, Abe K, et al. Diagnostic performance of ADC for non-mass-like breast lesions on MR imaging. Magn Reson Med Sci. 2010;9:217–25.

    Article  PubMed  Google Scholar 

  18. Tozaki M, Fukuda K. High-spatial-resolution MRI of non-masslike breast lesions: interpretation model based on BI-RADS MRI descriptors. AJR Am J Roentgenol. 2006;187:330–7. doi:10.2214/AJR.05.0998.

    Article  PubMed  Google Scholar 

  19. Goto M, Ito H, Akazawa K, Kubota T, Kizu O, Yamada K, et al. Diagnosis of breast tumors by contrast-enhanced MR imaging: comparison between the diagnostic performance of dynamic enhancement patterns and morphologic features. J Magn Reson Imaging. 2007;25:104–12. doi:10.1002/jmri.20812.

    Article  PubMed  Google Scholar 

  20. Jansen SA, Fan X, Karczmar GS, Abe H, Schmidt RA, Giger M, et al. DCEMRI of breast lesions: is kinetic analysis equally effective for both mass and nonmass-like enhancement. Med Phys. 2008;35:3102–9. doi:10.1118/1.2936220.

    Article  PubMed  Google Scholar 

  21. Newell D, Nie K, Chen JH, Hsu CC, Yu HJ, Nalcioglu O, et al. Selection of diagnostic features on breast MRI to differentiate between malignant and benign lesions using computer-aided diagnosis: differences in lesions presenting as mass and non-mass-like enhancement. Eur Radiol. 2010;20:771–81. doi:10.1007/s00330-009-1616-y.

    Article  PubMed  Google Scholar 

  22. Lehman CD. Magnetic resonance imaging in the evaluation of ductal carcinoma in situ. J Natl Cancer Inst Monogr. 2010;2010(41):150–1. doi:10.1093/jncimonographs/lgq030.

    Article  PubMed  Google Scholar 

  23. Hatakenaka M, Soeda H, Yabuuchi H, Matsuo Y, Kamitani T, Oda Y, et al. Apparent diffusion coefficients of breast tumors: clinical application. Magn Reson Med Sci. 2008;7:23–9.

    Article  PubMed  Google Scholar 

  24. Abdel Razek AA, Gaballa G, Denewer A, Tawakol I. Diffusion weighted MR imaging of the breast. Acad Radiol. 2010;17:382–6. doi:10.1016/j.acra.2009.10.014.

    Article  PubMed  Google Scholar 

  25. Jin G, An N, Jacobs MA, Li K. The role of parallel diffusion-weighted imaging and apparent diffusion coefficient (ADC) map values for evaluating breast lesions: preliminary results. Acad Radiol. 2010;17:456–63. doi:10.1016/j.acra.2009.12.004.

    Article  PubMed  Google Scholar 

  26. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161:401–7.

    PubMed  Google Scholar 

  27. Gururajan M, Posadas EM, Chung LW. Future perspectives of prostate cancer therapy. Transl Androl Urol. 2012;1:19–32.

    PubMed  Google Scholar 

  28. Yuen S, Yamada K, Goto M, Nishida K, Takahata A, Nishimura T. Microperfusion-induced elevation of ADC is suppressed after contrast in breast carcinoma. J Magn Reson Imaging. 2009;29:1080–4.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by National Natural Science Foundation of China (no. 81150011).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liuquan Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, L., Bai, Y., Zhang, J. et al. Optimization of apparent diffusion coefficient measured by diffusion-weighted MRI for diagnosis of breast lesions presenting as mass and non-mass-like enhancement. Tumor Biol. 34, 1537–1545 (2013). https://doi.org/10.1007/s13277-013-0682-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-0682-6

Keywords

Navigation