Skip to main content

Advertisement

Log in

Effects of ARHI on cell cycle progression and apoptosis levels of breast cancer cells

  • Research Article
  • Published:
Tumor Biology

Abstract

The purposes of this study were to investigate the role of Aplysia Ras Homolog I (ARHI) on cell growth, proliferation, apoptosis, and other biological characteristics of HER2-positive breast cancer cells. Our goal was to provide experimental evidence for the development of future effective treatments of HER2-positive breast cancer. A pcDNA3.1-ARHI eukaryotic expression vector was constructed and transfected into the human HER2-positive breast cancer cell lines SK-BR-3 and JIMT-1. Then, various experimental methods were utilized to analyze the biological characteristics of ARHI-expressing breast cancer cells and to examine the impact of expression of the ARHI gene on cyclin D1, p27Kip1, and calpain1 expression. We further analyzed the cells in each group after treatment with trastuzumab to examine the effects of this drug on various cellular characteristics. When we compared pcDNA3.1-ARHI-expressing SK-BR-3 and JIMT-1 cells to their respective empty vector and control groups, we found that cell viability was significantly lower (p < 0.05) in the ARHI-expressing cells, and the proportions of G1 phase cells and apoptotic cells were significantly higher in the ARHI-expressing cells (p < 0.05). In all groups of SK-BR-3 cells, trastuzumab treatment significantly decreased cell growth (p < 0.05). The proportion of cells in G1 phase and the number of apoptotic cells in the pcDNA3.1-ARHI-expressing group were significantly higher than that in the empty vector group and the control group (p < 0.05). The growth of pcDNA3.1-ARHI-transfected JIMT-1 cells was significantly decreased (p < 0.05), while the proportion of apoptotic cells was significantly increased (p < 0.05). Cell growth, viability, and the percentage of apoptotic cells were similar between the JIMT-1 empty vector and control groups. ARHI expression inhibited cyclin D1 expression in SK-BR-3 cells and JIMT-1 cells, while it promoted p27Kip1 and calpain1 expression in these cells. ARHI expression inhibits the growth and proliferation of HER2-positive breast cancer cells, while it also promotes apoptosis in these cells. ARHI expression also improves the sensitivity of JIMT-1 cells to trastuzumab by inducing apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schechter AL, Stern DF, Vaidyanathan L, Decker SJ, Drebin JA, Greene MI, Weinberg RA. The neu oncogene: an erb-B-related gene encoding a 185,000-Mr tumour antigen. Nature. 1984;312(5994):513–6.

    Article  CAS  PubMed  Google Scholar 

  2. Xu Y, Sun Q. Headway in resistance to endocrine therapy in breast cancer. J Thorac Dis. 2010;2(3):171–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lv YG, Yu F, Yao Q, Chen JH, Wang L. The role of survivin in diagnosis, prognosis and treatment of breast cancer. J Thorac Dis. 2010;2(2):100–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Metro G, Crinò L. Advances on EGFR mutation for lung cancer. Transl Lung Cancer Res. 2012;1(1):5–13.

    PubMed  PubMed Central  Google Scholar 

  5. Neto AS, Tobias-Machado M, Wroclawski ML, Fonseca FL, Pompeo AC, Del Giglio A. Molecular oncogenesis of prostate adenocarcinoma: role of the human epidermal growth factor receptor 2 (HER-2/neu). Tumori. 2010;96(5):645–9.

    PubMed  Google Scholar 

  6. Yang D, Hendifar A, Lenz C, Togawa K, Lenz F, Lurje G, Pohl A, Winder T, Ning Y, Groshen S, Lenz H. Survival of metastatic gastric cancer: significance of age, sex and race/ethnicity. J Gastrointest Oncol. 2011;2(2):77–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Pirker R, Filipits M. Cetuximab in non-smallcell lung cancer. Transl Lung Cancer Res. 2012;1(1):54–60.

    PubMed  PubMed Central  Google Scholar 

  8. Mittendorf EA, Liu Y, Tucker SL, McKenzie T, Qiao N, Akli S, Biernacka A, Meijer L, Keyomarsi K, Hunt KK. A novel interaction between HER2/neu and cyclin E in breast cancer. Oncogene. 2010;29(27):3896–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Al-azawi D, Leong S, Wong L, Kay E, Hill AD, Young L. HER-2 positive and p53 negative breast cancers are associated with poor prognosis. Cancer Invest. 2011;29(5):365–9.

    Article  PubMed  Google Scholar 

  10. Knauer M, Cardoso F, Wesseling J, Bedard PL, Linn SC, Rutgers EJ, van ’t Veer LJ. Identification of a low-risk subgroup of HER-2-positive breast cancer by the 70-gene prognosis signature. Br J Cancer. 2010;103(12):1788–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lo PK, Kanojia D, Liu X, Singh UP, Berger FG, Wang Q, Chen H (2012) CD49f and CD61 identify Her2/neu-induced mammary tumor-initiating cells that are potentially derived from luminal progenitors and maintained by the integrin-TGFbeta signaling. Oncogene (in press)

  12. Dragowska WH, Weppler SA, Qadir MA, Wong LY, Franssen Y, Baker JH, Kapanen AI, Kierkels GJ, Masin D, Minchinton AI, et al. The combination of gefitinib and RAD001 inhibits growth of HER2 overexpressing breast cancer cells and tumors irrespective of trastuzumab sensitivity. BMC Cancer. 2011;11:420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nahta R, Esteva FJ. Trastuzumab: triumphs and tribulations. Oncogene. 2007;26(25):3637–43.

    Article  CAS  PubMed  Google Scholar 

  14. Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, Slamon DJ, Murphy M, Novotny WF, Burchmore M, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol. 2002;20(3):719–26.

    Article  CAS  PubMed  Google Scholar 

  15. Smith I, Procter M, Gelber RD, Guillaume S, Feyereislova A, Dowsett M, Goldhirsch A, Untch M, Mariani G, Baselga J, et al. 2-year follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer: a randomised controlled trial. Lancet. 2007;369(9555):29–36.

    Article  CAS  PubMed  Google Scholar 

  16. White CD, Li Z, Dillon DA, Sacks DB. IQGAP1 protein binds human epidermal growth factor receptor 2 (HER2) and modulates trastuzumab resistance. J Biol Chem. 2011;286(34):29734–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhao Y, Liu H, Liu Z, Ding Y, Ledoux SP, Wilson GL, Voellmy R, Lin Y, Lin W, Nahta R, et al. Overcoming trastuzumab resistance in breast cancer by targeting dysregulated glucose metabolism. Cancer Res. 2011;71(13):4585–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sabatier R, Finetti P, Adelaide J, Guille A, Borg JP, Chaffanet M, Lane L, Birnbaum D, Bertucci F. Down-regulation of ECRG4, a candidate tumor suppressor gene, in human breast cancer. PLoS One. 2011;6(11):e27656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hernandez-Aya LF, Gonzalez-Angulo AM. Targeting the phosphatidylinositol 3-kinase signaling pathway in breast cancer. Oncologist. 2011;16(4):404–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cantor SB, Guillemette S. Hereditary breast cancer and the BRCA1-associated FANCJ/BACH1/BRIP1. Future Oncol. 2011;7(2):253–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Korkmaz A, Sanchez-Barcelo EJ, Tan DX, Reiter RJ. Role of melatonin in the epigenetic regulation of breast cancer. Breast Cancer Res Treat. 2009;115(1):13–27.

    Article  CAS  PubMed  Google Scholar 

  22. Badgwell DB, Lu Z, Le K, Gao F, Yang M, Suh GK, Bao JJ, Das P, Andreeff M, Chen W et al. (2012) The tumor-suppressor gene ARHI (DIRAS3) suppresses ovarian cancer cell migration through inhibition of the Stat3 and FAK/Rho signaling pathways. Oncogene 31:68–79

    Google Scholar 

  23. Yu Y, Xu F, Peng H, Fang X, Zhao S, Li Y, Cuevas B, Kuo WL, Gray JW, Siciliano M, et al. NOEY2 (ARHI), an imprinted putative tumor suppressor gene in ovarian and breast carcinomas. Proc Natl Acad Sci U S A. 1999;96(1):214–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Papademetriou K, Ardavanis A, Kountourakis P. Neoadjuvant therapy for locally advanced breast cancer: focus on chemotherapy and biological targeted treatments’ armamentarium. J Thorac Dis. 2010;2(3):160–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Janssen EA, Ovestad IT, Skaland I, Soiland H, Gudlaugsson E, Kjellevold KH, Nysted A, Soreide JA, Baak JP. LOH at 1p31 (ARHI) and proliferation in lymph node-negative breast cancer. Cell Oncol. 2009;31(5):335–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Yu Y, Luo R, Lu Z, Wei Feng W, Badgwell D, Issa JP, Rosen DG, Liu J, Bast Jr RC. Biochemistry and biology of ARHI (DIRAS3), an imprinted tumor suppressor gene whose expression is lost in ovarian and breast cancers. Methods Enzymol. 2006;407:455–68.

    Article  CAS  PubMed  Google Scholar 

  27. Rosen DG, Wang L, Jain AN, Lu KH, Luo RZ, Yu Y, Liu J, Bast Jr RC. Expression of the tumor suppressor gene ARHI in epithelial ovarian cancer is associated with increased expression of p21WAF1/CIP1 and prolonged progression-free survival. Clin Cancer Res. 2004;10(19):6559–66.

    Article  CAS  PubMed  Google Scholar 

  28. Tanner M, Kapanen AI, Junttila T, Raheem O, Grenman S, Elo J, Elenius K, Isola J. Characterization of a novel cell line established from a patient with Herceptin-resistant breast cancer. Mol Cancer Ther. 2004;3(12):1585–92.

    CAS  PubMed  Google Scholar 

  29. Yang H, Lu X, Qian J, Xu F, Hu Y, Yu Y, Bast RC, Li J. Imprinted tumor suppressor gene ARHI induces apoptosis correlated with changes in DNA methylation in pancreatic cancer cells. Mol Med Report. 2010;3(4):581–7.

    PubMed Central  Google Scholar 

  30. Lu X, Qian J, Yu Y, Yang H, Li J. Expression of the tumor suppressor ARHI inhibits the growth of pancreatic cancer cells by inducing G1 cell cycle arrest. Oncol Rep. 2009;22(3):635–40.

    Article  CAS  PubMed  Google Scholar 

  31. Lin D, Cui F, Bu Q, Yan C. The expression and clinical significance of GTP-binding RAS-like 3 (ARHI) and microRNA 221 and 222 in prostate cancer. J Int Med Res. 2011;39(5):1870–5.

    Article  CAS  PubMed  Google Scholar 

  32. Chen MY, Liao WS, Lu Z, Bornmann WG, Hennessey V, Washington MN, Rosner GL, Yu Y, Ahmed AA, Bast Jr RC. Decitabine and suberoylanilide hydroxamic acid (SAHA) inhibit growth of ovarian cancer cell lines and xenografts while inducing expression of imprinted tumor suppressor genes, apoptosis, G2/M arrest, and autophagy. Cancer. 2011;117(19):4424–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao X, Li J, Zhuo J, Cai L. Reexpression of ARHI inhibits tumor growth and angiogenesis and impairs the mTOR/VEGF pathway in hepatocellular carcinoma. Biochem Biophys Res Commun. 2010;403(3–4):417–21.

    Article  CAS  PubMed  Google Scholar 

  34. Peng H, Xu F, Pershad R, Hunt KK, Frazier ML, Berchuck A, Gray JW, Hogg D, Bast Jr RC, Yu Y. ARHI is the center of allelic deletion on chromosome 1p31 in ovarian and breast cancers. Int J Cancer. 2000;86(5):690–4.

    Article  CAS  PubMed  Google Scholar 

  35. Bao JJ, Le XF, Wang RY, Yuan J, Wang L, Atkinson EN, LaPushin R, Andreeff M, Fang B, Yu Y, et al. Reexpression of the tumor suppressor gene ARHI induces apoptosis in ovarian and breast cancer cells through a caspase-independent calpain-dependent pathway. Cancer Res. 2002;62(24):7264–72.

    CAS  PubMed  Google Scholar 

  36. Lu Z, Luo RZ, Lu Y, Zhang X, Yu Q, Khare S, Kondo S, Kondo Y, Yu Y, Mills GB, et al. The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. J Clin Invest. 2008;118(12):3917–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yakes FM, Chinratanalab W, Ritter CA, King W, Seelig S, Arteaga CL. Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt Is required for antibody-mediated effects on p27, cyclin D1, and antitumor action. Cancer Res. 2002;62(14):4132–41.

    CAS  PubMed  Google Scholar 

  38. Chan CT, Metz MZ, Kane SE. Differential sensitivities of trastuzumab (Herceptin)-resistant human breast cancer cells to phosphoinositide-3 kinase (PI-3K) and epidermal growth factor receptor (EGFR) kinase inhibitors. Breast Cancer Res Treat. 2005;91(2):187–201.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng Cao or Shunchang Jiao.

Additional information

The authors have no commercial, proprietary, or financial interest in the products or companies described in this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Shi, L., Han, C. et al. Effects of ARHI on cell cycle progression and apoptosis levels of breast cancer cells. Tumor Biol. 33, 1403–1410 (2012). https://doi.org/10.1007/s13277-012-0388-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-012-0388-1

Keywords

Navigation