Skip to main content

Advertisement

Log in

The lack of Raf-1 kinase feedback regulation enhances antiapoptosis in cancer cells

  • Original Article
  • Published:
Oncogene Submit manuscript

Abstract

Raf-1 has an important role in cellular antiapoptosis. So far, there is no solid evidence that shows that Raf-1 mutation is associated with cancer development. In the course of further study of Raf-1 signaling, we have reported that Raf-1 hyperphosphorylation inhibits its kinase activity toward its downstream mitogen-activated protein kinase kinase 1/2 (MEK1/2) and proposed a model for negative feedback regulation of Raf-1. Here, we show that there is no hyperphosphorylation in some cancer cells, which results in increased kinase activity and enhances the antiapoptotic ability. Inhibition of either Raf-1 or ALG-2 (apoptosis-linked gene 2) expression results in apoptosis signal-regulating kinase 1/c-Jun N-terminal kinase (ASK1/JNK) signaling activation, and cell sensitivity to chemotherapeutic reagents, indicating that inhibition of ASK1/JNK apoptotic signaling by Raf-1 is mediated by ALG-2. A previous report indicated that extracellular signal-regulated kinase 1/2 (ERK1/2) were responsible for Raf-1 hyperphosphorylation. However, our evidence shows that when ERK1/2 are activated and the Raf-1 gene is not mutated, Raf-1 is not hyperphosphorylated in these cells, indicating that ERK1/2 are not responsible for the Raf-1 hyperphosphorylation in these cancer cell lines. Surprisingly, we also found that Raf-1 is not a necessary kinase for MEK1/2 activation under normal tissue culture conditions, but is required for MEK1/2 activation under apoptosis-inducing conditions. Our research demonstrates that although Raf-1 gene is not mutated, an abnormality of Raf-1 kinase feedback regulation enhances its antiapoptotic function, and Raf-1 can still be a pharmaceutical target to increase chemotherapy or radiotherapy sensitivity in these cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Appert-Collin A, Hubert P, Cremel G, Bennasroune A . Role of ErbB receptors in cancer cell migration and invasion. Front Pharmacol 2015; 6: 283.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bieker R, Padro T, Kramer J, Steins M, Kessler T, Retzlaff S et al. Overexpression of basic fibroblast growth factor and autocrine stimulation in acute myeloid leukemia. Cancer Res 2003; 63: 7241–7246.

    CAS  PubMed  Google Scholar 

  3. Brady G, Crean SJ, Naik P, Kapas S . Upregulation of IGF-2 and IGF-1 receptor expression in oral cancer cell lines. Int J Oncol. 2007; 31: 875–881.

    CAS  PubMed  Google Scholar 

  4. Culig Z, Bartsch G, Hobisch A . Interleukin-6 regulates androgen receptor activity and prostate cancer cell growth. Mol Cell Endocrinol 2002; 197: 231–238.

    Article  CAS  PubMed  Google Scholar 

  5. Culig Z, Hobisch A, Cronauer MV, Radmayr C, Trapman J, Hittmair A et al. Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res 1994; 54: 5474–5478.

    CAS  PubMed  Google Scholar 

  6. Cussenot O . Growth factors and prostatic tumors. Ann Endocrinol (Paris) 1997; 58: 370–380.

    CAS  Google Scholar 

  7. Kaplan PJ, Leav I, Greenwood J, Kwan PW, Ho SM . Involvement of transforming growth factor alpha (TGFalpha) and epidermal growth factor receptor (EGFR) in sex hormone-induced prostatic dysplasia and the growth of an androgen-independent transplantable carcinoma of the prostate. Carcinogenesis 1996; 17: 2571–2579.

    Article  CAS  PubMed  Google Scholar 

  8. Latil A, Bieche I, Pesche S, Valeri A, Fournier G, Cussenot O et al. VEGF overexpression in clinically localized prostate tumors and neuropilin-1 overexpression in metastatic forms. Int J Cancer 2000; 89: 167–171.

    Article  CAS  PubMed  Google Scholar 

  9. Li R, Younes M, Wheeler TM, Scardino P, Ohori M, Frolov A et al. Expression of vascular endothelial growth factor receptor-3 (VEGFR-3) in human prostate. Prostate 2004; 58: 193–199.

    Article  CAS  PubMed  Google Scholar 

  10. Park SJ, Gu MJ, Lee DS, Yun SS, Kim HJ, Choi JH . EGFR expression in pancreatic intraepithelial neoplasia and ductal adenocarcinoma. Int J Clin Exp Pathol 2015; 8: 8298–8304.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Segaliny AI, Tellez-Gabriel M, Heymann MF, Heymann D . Receptor tyrosine kinases: characterisation, mechanism of action and therapeutic interests for bone cancers. J Bone Oncol 2015; 4: 1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Trojan L, Thomas D, Knoll T, Grobholz R, Alken P, Michel MS . Expression of pro-angiogenic growth factors VEGF, EGF and bFGF and their topographical relation to neovascularisation in prostate cancer. Urol Res 2004; 32: 97–103.

    Article  CAS  PubMed  Google Scholar 

  13. Gille H, Sharrocks AD, Shaw PE . Phosphorylation of transcription factor p62TCF by MAP kinase stimulates ternary complex formation at c-fos promoter. Nature 1992; 358: 414–417.

    Article  CAS  PubMed  Google Scholar 

  14. Roberts TM . Cell biology. A signal chain of events. Nature 1992; 360: 534–535.

    Article  CAS  PubMed  Google Scholar 

  15. Steelman LS, Franklin RA, Abrams SL, Chappell W, Kempf CR, Basecke J et al. Roles of the Ras/Raf/MEK/ERK pathway in leukemia therapy. Leukemia 2011; 25: 1080–1094.

    Article  CAS  PubMed  Google Scholar 

  16. Yu P, Tung JK, Simons M . Lymphatic fate specification: an ERK-controlled transcriptional program. Microvasc Res 2014; 96: 10–15.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang W, Lee JC, Kumar S, Gowen M . ERK pathway mediates the activation of Cdk2 in IGF-1-induced proliferation of human osteosarcoma MG-63 cells. J Bone Miner Res 1999; 14: 528–535.

    Article  CAS  PubMed  Google Scholar 

  18. Huser M, Luckett J, Chiloeches A, Mercer K, Iwobi M, Giblett S et al. MEK kinase activity is not necessary for Raf-1 function. EMBO J 2001; 20: 1940–1951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kauffmann-Zeh A, Rodriguez-Viciana P, Ulrich E, Gilbert C, Coffer P, Downward J et al. Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. Nature 1997; 385: 544–548.

    Article  CAS  PubMed  Google Scholar 

  20. Lehmann K, Janda E, Pierreux CE, Rytomaa M, Schulze A, McMahon M et al. Raf induces TGFbeta production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells. Genes Dev 2000; 14: 2610–2622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mikula M, Schreiber M, Husak Z, Kucerova L, Ruth J, Wieser R et al. Embryonic lethality and fetal liver apoptosis in mice lacking the c-raf- 1 gene. EMBO J 2001; 20: 1952–1962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Murakami MS, Morrison DK . Raf-1 without MEK? Sci STKE 2001; 2001: E30.

    Google Scholar 

  23. Pritchard C, McMahon M . Raf revealed in life-or-death decisions. Nat Genet 1997; 16: 214–215.

    Article  CAS  PubMed  Google Scholar 

  24. Sewing A, Wiseman B, Lloyd AC, Land H . High-intensity Raf signal causes cell cycle arrest mediated by p21Cip1. Mol Cell Biol 1997; 17: 5588–5597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Little AS, Smith PD, Cook SJ . Mechanisms of acquired resistance to ERK1/2 pathway inhibitors. Oncogene 2013; 32: 1207–1215.

    Article  CAS  PubMed  Google Scholar 

  26. Osborne JK, Zaganjor E, Cobb MH . Signal control through Raf: in sickness and in health. Cell Res 2012; 22: 14–22.

    Article  CAS  PubMed  Google Scholar 

  27. Poulikakos PI, Persaud Y, Janakiraman M, Kong X, Ng C, Moriceau G et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 2011; 480: 387–390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Poulikakos PI, Solit DB . Resistance to MEK inhibitors: should we co-target upstream? Sci Signal 2011; 4 pe16.

    Article  PubMed  Google Scholar 

  29. Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N . RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 2010; 464: 427–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Alavi A, Hood JD, Frausto R, Stupack DG, Cheresh DA . Role of Raf in vascular protection from distinct apoptotic stimuli. Science 2003; 301: 94–96.

    Article  CAS  PubMed  Google Scholar 

  31. Chen J, Fujii K, Zhang L, Roberts T, Fu H . Raf-1 promotes cell survival by antagonizing apoptosis signal-regulating kinase 1 through a MEK-ERK independent mechanism. Proc Natl Acad Sci USA 2001; 98: 7783–7788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yamaguchi O, Watanabe T, Nishida K, Kashiwase K, Higuchi Y, Takeda T et al. Cardiac-specific disruption of the c-raf-1 gene induces cardiac dysfunction and apoptosis. J Clin Invest 2004; 114: 937–943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hwang IS, Jung YS, Kim E . Interaction of ALG-2 with ASK1 influences ASK1 localization and subsequent JNK activation. FEBS Lett 2002; 529: 183–187.

    Article  CAS  PubMed  Google Scholar 

  34. Chen C, Sytkowski AJ . Apoptosis-linked gene-2 connects the Raf-1 and ASK1 signalings. Biochem Biophys Res Commun 2005; 333: 51–57.

    Article  CAS  PubMed  Google Scholar 

  35. Chen C, Sytkowski AJ . Erythropoietin regulation of Raf-1 and MEK: evidence for a Ras-independent mechanism. Blood 2004; 104: 73–80.

    Article  CAS  PubMed  Google Scholar 

  36. Dougherty MK, Muller J, Ritt DA, Zhou M, Zhou XZ, Copeland TD et al. Regulation of Raf-1 by direct feedback phosphorylation. Mol Cell 2005; 17: 215–224.

    Article  CAS  PubMed  Google Scholar 

  37. Emuss V, Garnett M, Mason C, Marais R . Mutations of C-RAF are rare in human cancer because C-RAF has a low basal kinase activity compared with B-RAF. Cancer Res 2005; 65: 9719–9726.

    Article  CAS  PubMed  Google Scholar 

  38. Hagemann C, Rapp UR . Isotype-specific functions of Raf kinases. Exp Cell Res 1999; 253: 34–46.

    Article  CAS  PubMed  Google Scholar 

  39. Matallanas D, Birtwistle M, Romano D, Zebisch A, Rauch J, von Kriegsheim A et al. Raf family kinases: old dogs have learned new tricks. Genes Cancer 2011; 2: 232–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Sichuan Scientific and Technology Department Basic Research Fund (2015JY0011) (to CC) and Sichuan Cancer Hospital Research Fund (to CC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C M Chen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, S., Cao, B., Zhang, H. et al. The lack of Raf-1 kinase feedback regulation enhances antiapoptosis in cancer cells. Oncogene 36, 2014–2022 (2017). https://doi.org/10.1038/onc.2016.384

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.384

  • Springer Nature Limited

This article is cited by

Navigation