Tumor Biology

, Volume 32, Issue 4, pp 761–767 | Cite as

Telomerase reverse transcriptase catalytic subunit expression and proliferation index in Wilms tumor

  • Gulden Diniz
  • Safiye Aktas
  • Aysen Turedi
  • Gunyuz Temir
  • Ragip Ortac
  • Canan Vergin
Research Article


Telomerase activity provides telomere maintenance in chromosomes. It prevents cells from entering senescence. Telomerase activity is one of the crucial steps in various cancers. Wilms tumor (nephroblastoma) is one of the most common solid tumors of childhood. Hitherto, telomerase reverse transcriptase (TERT) catalytic subunit expression in Wilms tumor has not been investigated widely. The aim of this study was to explore the expression level of human TERT in Wilms tumor and to correlate with some clinical prognosis factors such as tumor weight, stage, histology, and Ki67 expression. This study included 41 nephroblastoma cases of childhood. The telomerase catalytic subunit expression and proliferation index was determined using an immunohistochemical method on archival paraffin-embedded tissue sections. Statistical analysis was done on SPSS 9.05 by Mann–Whitney U test and Spearman’s correlation analysis. TERT expression was negative in 11 cases (26.8%), weakly positive in 14 cases (34.1%), and strongly positive in 16 cases (39%). The proliferation index was found to be 20 to 90 (mean 58.9 ± 26.8). Using Spearman correlation analysis, both the TERT expression (p = 0.032) and Ki67 index (p = 0.048) were found to be correlated with survival rate. Similarly, both the telomerase expression (p = 0.011) and the Ki67 index (0.040) were correlated with the weight and dimension of the tumor. But there was no relationship between telomerase expression and Ki67 index (p = 0.429). The mean survival time for telomerase negative cases was 56.6 ± 27.3 months, while it was 34.67 ± 28.36 months for positive cases. The Mann–Whitney U test revealed that levels of telomerase (p = 0.040) significantly affected the survival rate. In the present study, we showed that the presence of TERT expression correlated with both tumor size and survival time. These findings suggest that senescence may play an important role in WT evolution, and determination of telomere maintenance will be useful to predict survival and follow-up of patients with Wilms tumor.


hTERT expression Ki67 Oncology Kidney Tumor biology 


Conflicts of interest



  1. 1.
    Shay JW, Zou Y, Hiyama H, Wright WE. Telomerase and cancer. Hum mol genet. 2001;10(7):677–85.PubMedCrossRefGoogle Scholar
  2. 2.
    Hiyama E, Yamaoka H, Matsunaga T, Hayashi Y, Ando H, Suita S, et al. High expression of telomerase is an independent prognostic indicator of poor outcome in hepatoblastoma. Br J Cancer. 2004;91(5):972–9.PubMedGoogle Scholar
  3. 3.
    Cukusić A, Skrobot Vidacek N, Sopta M, Rubelj I. Telomerase regulation at the crossroads of cell fate. Cytogenet Genome Res. 2008;122(3–4):263–72.PubMedGoogle Scholar
  4. 4.
    Cakir C, Gulluoglu MG, Yilmazbayhan D. Cell proliferation rate and telomerase activity in the differential diagnosis between benign and malignant mesothelial proliferations. Pathology. 2006;38(1):10–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Hiyama E, Hiyama K. Clinical utility of telomerase in cancer. Oncogene. 2002;21(4):643–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Hiyama E, Hiyama K, Yokoyama T, Shay JW. Immunohistochemical detection of telomerase (hTERT) protein in human cancer tissues and a subset of cells in normal tissues. Neoplasia. 2001;3(1):17–26.PubMedCrossRefGoogle Scholar
  7. 7.
    Hashimoto Y, Murakami Y, Uemura K, Hayashidani Y, Sudo T, Ohge H, et al. Detection of human telomerase reverse transcriptase (hTERT) expression in tissue and pancreatic juice from pancreatic cancer. Surgery. 2008;143(1):113–25.PubMedCrossRefGoogle Scholar
  8. 8.
    Bruey JM, Kantarjian H, Ma W, Estrov Z, Yeh C, Donahue A, et al. Circulating Ki-67 index in plasma as a biomarker and prognostic indicator in chronic lymphocytic leukemia. Leuk Res. 2010;34:1320–4.PubMedCrossRefGoogle Scholar
  9. 9.
    Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol. 2000;182:311–22.PubMedCrossRefGoogle Scholar
  10. 10.
    Jurić I, Pogorelić Z, Kuzmić-Prusac I, Biočić M, Jakovljević G, Stepan J, et al. Expression and prognostic value of the Ki-67 in Wilms’ tumor: experience with 48 cases. Pediatr Surg Int. 2010;26:487–93.PubMedCrossRefGoogle Scholar
  11. 11.
    Scott RH, Walker L, Olsen ØE, Levitt G, Kenney I, Maher E, et al. Surveillance for Wilms tumour in at-risk children: pragmatic recommendations for best practice. Arch Dis Child. 2006;91(12):995–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Husain AN, Pysher TJ, Dehner LP. The kidney and lower urinary tract. In: Stocker JT, Dehner LP, editors. Pediatric pathology. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 834–903.Google Scholar
  13. 13.
    Perlman EJ. Renal tumors. In: Gilbert-Barness E, editor. Potter’s pathology of the fetus, infant and child. Philadelphia: Mosby Elsevier; 2007. p. 1347–75.Google Scholar
  14. 14.
    Argani P, Beckwith JB. Renal neoplasms of childhood. In: Mills SE, editor. Sternberg’s diagnostic surgical pathology. Philadelphia: Lippincott Williams and Wilkins; 2004. p. 2001–33.Google Scholar
  15. 15.
    Metzger ML, Dome JS. Current therapy for Wilms’ tumor. Oncologist. 2005;10(10):815–26.PubMedCrossRefGoogle Scholar
  16. 16.
    Terenziani M, Spreafico F, Collini P, Piva L, Perotti D, Podda M, et al. Adult Wilms’ tumor: a monoinstitutional experience and a review of the literature. Cancer. 2004;101(2):289–93.PubMedCrossRefGoogle Scholar
  17. 17.
    Scott RH, Stiller CA, Walker L, Rahman N. Syndromes and constitutional chromosomal abnormalities associated with Wilms tumour. J Med Genet. 2006;43(9):705–15.PubMedCrossRefGoogle Scholar
  18. 18.
    Hohenstein P, Hastie ND. The many facets of the Wilms’ tumour gene, WT1. Hum Mol Genet. 2006;15(Spec No 2):R196–201.PubMedCrossRefGoogle Scholar
  19. 19.
    Maw MA, Grundy PE, Millow LJ, Eccles MR, Dunn RS, Smith PJ, et al. A third Wilms’ tumor locus on chromosome 16q. Cancer Res. 1992;52(11):3094–8.PubMedGoogle Scholar
  20. 20.
    Rahman N, Arbour L, Tonin P, Renshaw J, Pelletier J, Baruchel S, et al. Evidence for a familial Wilms’ tumour gene (FWT1) on chromosome 17q12–q21. Nat Genet. 1996;13(4):461–3.PubMedCrossRefGoogle Scholar
  21. 21.
    Miozzo M, Perotti D, Minoletti F, Mondini P, Pilotti S, Luksch R, et al. Mapping of a putative tumor suppressor locus to proximal 7p in Wilms tumors. Genomics. 1996;37(3):310–5.PubMedCrossRefGoogle Scholar
  22. 22.
    White GR, Kelsey AM, Varley JM, Birch JM. Somatic glypican 3 (GPC3) mutations in Wilms’ tumour. Br J Cancer. 2002;86(12):1920–2.PubMedCrossRefGoogle Scholar
  23. 23.
    Rivera MN, Kim WJ, Wells J, Driscoll DR, Brannigan BW, Han M, et al. An X chromosome gene, WTX, is commonly inactivated in Wilms tumor. Science. 2007;315(5812):642–5.PubMedCrossRefGoogle Scholar
  24. 24.
    Slade I, Stephens P, Douglas J, Barker K, Stebbings L, Abbaszadeh F, et al. Constitutional translocation breakpoint mapping by genome-wide paired-end sequencing identifies HACE1 as a putative Wilms tumour susceptibility gene. J Med Genet. 2010;47(5):342–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Ramachandran C, Melnick SJ, Escalon E, Jhabvala P, Khatib Z, Alamo A, et al. Expression of apoptosis, cell proliferation, and drug resistance genes in pediatric Wilms’ tumors. Anticancer Res. 2000;20(5C):3759–65.PubMedGoogle Scholar
  26. 26.
    Ramburan A, Hadley GP, Govender D. Expression of E-cadherin, cadherin-11, alpha-, beta- and gamma-catenins in nephroblastomas: relationship with clinicopathological parameters, prognostic factors and outcome. Pathology. 2006;38(1):39–44.PubMedCrossRefGoogle Scholar
  27. 27.
    Wittmann S, Wunder C, Zirn B, Furtwängler R, Wegert J, Graf N, et al. New prognostic markers revealed by evaluation of genes correlated with clinical parameters in Wilms tumors. Genes Chromosomes Cancer. 2008;47(5):386–95.PubMedCrossRefGoogle Scholar
  28. 28.
    Dome JS, Chung S, Bergemann T, Umbricht CB, Saji M, Carey LA, et al. High telomerase reverse transcriptase (hTERT) messenger RNA level correlates with tumor recurrence in patients with favorable histology Wilms’ tumor. Cancer Res. 1999;59(17):4301–7.PubMedGoogle Scholar
  29. 29.
    Dome JS, Bockhold CA, Li SM, Baker SD, Green DM, Perlman EJ, et al. High telomerase RNA expression level is an adverse prognostic factor for favorable-histology Wilms’ tumor. J Clin Oncol. 2005;23(36):9138–45.PubMedCrossRefGoogle Scholar
  30. 30.
    Yashima K, Maitra A, Timmons CF, Rogers BB, Pinar H, Shay JW, et al. Expression of the RNA component of telomerase in Wilms tumor and nephrogenic rest recapitulates renal embryogenesis. Hum Pathol. 1998;29(5):536–42.PubMedCrossRefGoogle Scholar
  31. 31.
    Green DM, D’Anjio GJ, Beckwith JB. Wilms’ tumor. In: Pizzo PA, Fobcek DG, editors. Principles and practice of pediatric oncology. 2nd ed. Philadelphia: Lippincott; 1997. p. 733–59.Google Scholar
  32. 32.
    Williams G. Statistical methods. In: Detels R, Beaglehole R, Lansung MA, Gulliford M, editors. Oxford textbook of public health: epidemiological and biostatistical approaches, vol. 2. 5th ed. England: Oxford Press; 2009. p. 448–714.Google Scholar
  33. 33.
    Horster MF, Braun GS, Huber SM. Embryonic renal epithelia: induction, nephrogenesis, and cell differentiation. Physiol Rev. 1999;79:1157–91.PubMedGoogle Scholar
  34. 34.
    Quaggin SE, Kreidberg JA. Development of the renal glomerulus: good neighbors and good fences. Development. 2008;135(4):609–20.PubMedCrossRefGoogle Scholar
  35. 35.
    Fischer EG, Carney JA, Anderson SR, Klatt EC, Lager DJ. An immunophenotypic comparison of metanephric metaplasia of Bowman capsular epithelium with metanephric adenoma, Wilms tumor, and renal development: a case report and review of the literature. Am J Clin Pathol. 2004;121(6):850–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Delahunt B, Farrant GJ, Bethwaite PB, Nacey JN, Lewis ME. Assessment of proliferative activity in Wilms’ tumour. Anal Cell Pathol. 1994;7(2):127–38.PubMedGoogle Scholar
  37. 37.
    Berrebi D, Leclerc J, Schleiermacher G, Zaccaria I, Boccon-Gibod L, Fabre M, et al. High cyclin E staining index in blastemal, stromal or epithelial cells is correlated with tumor aggressiveness in patients with nephroblastoma. PLoS One. 2008;3(5):e2216.PubMedCrossRefGoogle Scholar
  38. 38.
    Khine MM, Aung W, Sibbons PD, Howard CV, Clapham E, McGill F, et al. Analysis of relative proliferation rates of Wilms’ tumor components using proliferating cell nuclear antigen and MIB-1 (Ki-67 equivalent antigen) immunostaining and assessment of mitotic index. Lab Invest. 1994;70(1):125–9.PubMedGoogle Scholar
  39. 39.
    Oh S, Song Y, Yim J, Kim TK. The Wilms’ tumor 1 tumor suppressor gene represses transcription of the human telomerase reverse transcriptase gene. J Biol Chem. 1999;274(52):37473–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Park JI, Venteicher AS, Hong JY, Choi J, Jun S, Shkreli M, et al. Telomerase modulates Wnt signalling by association with target gene chromatin. Nature. 2009;460(7251):66–72.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2011

Authors and Affiliations

  • Gulden Diniz
    • 1
  • Safiye Aktas
    • 2
  • Aysen Turedi
    • 3
  • Gunyuz Temir
    • 4
  • Ragip Ortac
    • 5
  • Canan Vergin
    • 3
  1. 1.PathologyIzmir Dr. Behcet Uz Children’s HospitalIzmirTurkey
  2. 2.Oncology InstituteDokuz Eylul UniversityIzmirTurkey
  3. 3.Hematology-OncologyIzmir Dr. Behcet Uz Children’s HospitalIzmirTurkey
  4. 4.Pediatric SurgeryIzmir Dr. Behcet Uz Children’s HospitalIzmirTurkey
  5. 5.PathologyIzmir Dr. Behcet Uz Children’s HospitalIzmirTurkey

Personalised recommendations