Skip to main content

Advertisement

Log in

Cytostatic effect of novel mTOR inhibitor, PRP-1 (galarmin) in MDA 231 (ER−) breast carcinoma cell line. PRP-1 inhibits mesenchymal tumors

  • Research Article
  • Published:
Tumor Biology

Abstract

Activation of the PI3K–Akt–mTOR pathway is implicated both in the establishment of tumors and as well as a target for therapy in many types of solid malignancy, its blockade represents an opportunity to improve outcomes in patients with tumors that are associated with poor prognosis. Our experimental data indicates that proline-rich polypeptide-1 (PRP-1, galarmin) is immunomodulator cytokine, produced by hypothalamic neurosecretory cells and exerts its antiproliferative effect on the tumor cells of mesenchymal origin via inhibiting mTOR kinase activity and repressing cell cycle progression. The goal of these investigations was to elucidate the antiproliferative action of PRP-1 on the breast carcinoma cell line MDA 231 (ER−) and to compare PRP-1 action previously reported on other mesenchymal tumors. These experiments confirmed maximum inhibition of cell growth at 0.5 and 1 μg/ml PRP-1 (71% and 63%, respectively) and inhibition at 10 μg/ml of 44%. There was no inhibitory effect observed on luminal T47-D (ER+) cells. Videomicroscopy results demonstrated dividing cells in the cytokine-treated MDA 231 (ER−), suggesting that the cells were not in the state of dormancy. The flow cytometry experiments confirmed that PRP-1-treated cells were accumulated in S phase. No apoptosis, caspase activation, or senescence was detected after treatment with this cytokine. Experiments with mTOR with PRP-1 (10 μg/ml) indicated statistically significant 40% inhibition of mTOR kinase activity in immunoprecipitates of the MDA 231 (ER−) cell line. PRP-1 is a novel mTOR inhibitor with strong antiproliferative action in mesenchymal tumors mostly resistant to radiation and chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Galoyan AA. Brain neurosecretory cytokines: immune response and neuronal survival. NY: Kluwer Academic/Plenum Publishers; 2004.

    Google Scholar 

  2. Galoyan A. The brain immune system: chemistry and biology of the signal molecules. In: Abel L, editor. Handbook of neurochemistry and neurobiology. NY: Springer; 2008. p. 155–96.

    Google Scholar 

  3. Galoyan AA, Grigorian SL, Badalyan CV. Treatment and prophylaxis of anthrax by brain neurosecretory cytokines. Neurochem Res. 2006;31(6):795–803.

    Article  PubMed  CAS  Google Scholar 

  4. Galoyan AA, Sarkissian JS, Chavushyan VA, et al. Neuroprotective action of hypothalamic peptide PRP-1 at various time survival following spinal cord hemisection. Neurochem Res. 2005;30(4):507–25.

    Article  PubMed  CAS  Google Scholar 

  5. Galoyan AA. Neurochemistry of brain neuroendocrine immune system: signal molecules. Neurochem Res. 2000;25(9/10):1343–55.

    Article  PubMed  CAS  Google Scholar 

  6. Galoyan AA, Aprikyan VS. A new hypothalamic polypeptide is a regulator of myelopoiesis. Neurochem Res. 2002;27(4):305–12.

    Article  PubMed  CAS  Google Scholar 

  7. Galoyan AA, Shakhlamov VA, Kondakova LI, Altukhova VI, Polyakova GP. The influence of proline-rich polypeptide on the morphology and mitotic activity of neurinoma Hassel node of tumor cells at rats (electron microscopic investigations). PNAS (Russian Academy of Sciences). 2001;101(2):279–86.

    Google Scholar 

  8. Galoyan AA, Shakhlamov VA, Malaytsev VV. Changes in tumor cells L929 under PRP effect in vitro. Med Sci Armenia. 2001;41(1):25–9.

    Google Scholar 

  9. Galoyan AA, Margaryan KS, Hovhannisyan GG, Gasparyan GH, Aroutiounian DN, Aroutiounian RM. Study of the genotoxic effects of a proline-richpolypeptide using the comet assay. Neurochem Journal. 2009;3(2):145–8.

    Article  Google Scholar 

  10. Aroutiounian RM, Hovhannisyan GG, Gasparyan GH, Margaryan KS, Aroutiounian DN, Aroutiounian DN, et al. Proline-rich polypeptide-1 protects the cells in vitro from genotoxic effects of mitomycin C. Neurochem Res Apr. 2010;35(4):598–602.

    Article  CAS  Google Scholar 

  11. Chailakhyan RK, Gerasimov YV, Chailakhyan MR, Galoyan AA. Proline- rich hypothalamic polypeptide has opposite effects on the proliferation of human normal bone marrow stromal cells and human giant-cell tumour stromal cells. Neurochem Res. 2010;35(6):934–9.

    Article  PubMed  CAS  Google Scholar 

  12. Galoian K, Scully S, McNamara G, Flynn P, Galoyan A. Antitumorigenic effect of brain proline rich polypeptide-1 in human chondrosarcoma. Neurochem Res. 2009;34(Issue 12):2117–21.

    Article  PubMed  CAS  Google Scholar 

  13. Galoian K, Scully S, Galoyan A. Myc-oncogene inactivating effect by proline rich polypeptide (PRP-1) in chondrosarcoma JJ012 cells. Neurochem Res. 2009;34(2):379–85.

    Article  PubMed  CAS  Google Scholar 

  14. Kaelin Jr WG, Craig B. Thompson clues from cell metabolism. Nature. 2010;465(3):562–4.

    Article  PubMed  CAS  Google Scholar 

  15. Hosoi H, Dilling MB, Liu LN, Danks MK, Shikata T, Sekulic A, et al. Studies on the mechanism of resistance to rapamycin in human cancer cells. Mol Pharmacol. 1998;54(5):815–24.

    PubMed  CAS  Google Scholar 

  16. Robert PC, Shiu PW, Dubik D. cMyc oncogene expression in estrogen dependent and independent breast cancer. Clin Chem. 1993;39(2):353–5.

    Google Scholar 

  17. Dubik D, Shiu RP. Mechanism of estrogen activation of cMyc oncogene expression. Oncogene. 1992;7:1587–94.

    PubMed  CAS  Google Scholar 

  18. Berns EM, Klijn JG, van Putten WL, van Staveren IL, Portengen H, Foekens JA. c-myc amplification is a better prognostic factor than HER2/neu amplification in primary breast cancer. Cancer Res. 1992;52:1107–13.

    PubMed  CAS  Google Scholar 

  19. Collins S, Groudine M. Amplification of endogenous myc- related DNA sequences in a human myeloid leukemic cell line. Nature. 1982;298:679–81.

    Article  PubMed  CAS  Google Scholar 

  20. Galoian K, Milne T, Brock H, Shilatifard A, Slany R, Hess JL. Deregulation of c-myc by leukemogenic MLL fusion proteins. Blood Acad Sci USA. 2000;90:8392–6. Suppl. 96, 457a.

    Google Scholar 

  21. Martin ME, Milne TA, Bloyer S, Galoian K, Shen W, Gibbs D, et al. Dimerization of MLL fusion proteins immortalizes hematopoietic cells. Cancer Cell Sep. 2003;4(3):197–207.

    Article  CAS  Google Scholar 

  22. Ar-Rushdi A, Nishikura K, Erikson J, Watt R, Rovera G, Croce CM. Differential expression of the translocated and the untranslocated cmyc oncogene in Burkitt Lymphoma. Science. 1983;222:390–3.

    Article  PubMed  CAS  Google Scholar 

  23. Little CD, Nau MN, Carney DN, Gazdar AF, Minna JD. Small cell carcinoma of the lung: amplification and expression of the c-myc oncogene in human lung cancer cell lines. Nature. 1984;306:194–6.

    Article  Google Scholar 

  24. Galoian KA, Temple HT, Galoyan AA. Cytostatic effect of the hypothalamic cytokine PRP-1 is mediated by its inhibition of mTOR and c-Myc in high grade metastatic chondrosarcoma. Neurochemical Res. 2011;36:812–8.

    Article  CAS  Google Scholar 

  25. Barrios C, Castresana JS, Kreicbergs A. Clinicopathologic correlations and short-term prognosis in musculoskeletal sarcoma with c-myc oncogene amplification. Am J Clin Oncol. 1994;17:273–6.

    Article  PubMed  CAS  Google Scholar 

  26. Chen Y, Olopade OI. MYC in breast tumor progression. Expert Rev Anticancer Ther. 2008;8:1689–98.

    Article  PubMed  CAS  Google Scholar 

  27. Hynes NE, Stoelzle T. Breast Cancer Research Key signalling nodes in mammary gland development and cancer: Myc. Breast Cancer Research. 2009;11:210.

    Article  PubMed  Google Scholar 

  28. Rhodes DR, Kalyana-Sundaram S, Tomlins SA, Mahavisno V, Kasper N, Varambally R, et al. Molecular concepts analysis links tumors, pathways, mechanisms, and drugs. Neoplasia. 2007;9:443–54.

    Article  PubMed  CAS  Google Scholar 

  29. Alles MC, Gardiner-Garden M, Nott DJ, Wang Y, Foekens JA, Sutherland RL, et al. Meta-analysis and gene set enrichment relative to ER status reveal elevate activity of MYC and E2F in the ‘basal’ breast cancer subgroup. PLoS ONE. 2009;4:e4710.

    Article  PubMed  Google Scholar 

  30. Funasaka T, Hu H, Hogan V, Raz A. Down-regulation of phosphoglucose isomerase/autocrine motility factor expression sensitizes human fibrosarcoma cells to oxidative stress leading to cellular senescence. J Biol Chem. 2007;282(50):36362–9.

    Article  PubMed  CAS  Google Scholar 

  31. Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M, et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature. 2005;436(7051):725–30.

    Article  PubMed  CAS  Google Scholar 

  32. Harper JV (2005) Synchronization of cell populations in G1/S and G2/M phases of the cell cycle. In: T. Humphrey and G. Brooks. Methods in Molecular Biology, vol 296, Cell Cycle control, pp 157–166

  33. Figlin RA et al. NCCN Task Force Report: mTOR inhibition in solid tumors. JNCCN. 2008;6(5):S1–S25.

    PubMed  CAS  Google Scholar 

  34. Korn EL, Arbuck SG, Pluda JM, Simon R, Kaplan RS, Christian MC. Clinical trial designs for cytostatic agents: are new approaches needed? J Clin Oncol. 2001;19(1):265–72.

    PubMed  CAS  Google Scholar 

  35. Sarrió D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J. Epithelial–mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res. 2008;68(4):987–97.

    Article  Google Scholar 

  36. Gupta GP, Massague J. Cancer metastasis: building a framework. Cell. 2006;2(127):679–95.

    Article  Google Scholar 

  37. Sheridan C, Kishimoto H, Fuchs RK, et al. CD44+/CD24 breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res. 2006;8:R59.

    Article  PubMed  Google Scholar 

  38. Hugo H, Ackland ML, Blick T, et al. Epithelial mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. J Cell Physiol. 2007;213:374–83.

    Article  PubMed  CAS  Google Scholar 

  39. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7:131–42.

    Article  PubMed  CAS  Google Scholar 

  40. Thiery JP. Epithelial –mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2:442–54.

    Article  PubMed  CAS  Google Scholar 

  41. Thompson EW, Newgreen DF, Tarin D. Carcinoma invasion and metastasis: a role for epithelial–mesenchymal transition? Cancer Res. 2005;65:5991–5. discussion 5.

    Article  PubMed  CAS  Google Scholar 

  42. Savagner P. Leaving the neighborhood: molecular mechanisms involved during epithelial–mesenchymal transition. Bioessays. 2001;23:912–23.

    Article  PubMed  CAS  Google Scholar 

  43. Stingl J, Caldas. Molecular heterogeneity of breast carcinomas and the cancer stem cell hypothesis. Nat Rev Cancer. 2007;7:791–9.

    Article  PubMed  CAS  Google Scholar 

  44. Laurenti E, Wilson A, Trumpp A. Mycs other life:stem cells and beyond. Curr Opin Cell Biol. 2009;21:844–54.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Karoline Briegel from University of Miami, Miller School of Medicine (Department Biochemistry) for offering us initial supply of MDA 231 (ER−) and T47 (ER+) breast carcinoma cell lines and James Phillips for his assistance in Flow Cytometry Core of the University of Miami.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina A. Galoian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galoian, K.A., Temple, T.H. & Galoyan, A. Cytostatic effect of novel mTOR inhibitor, PRP-1 (galarmin) in MDA 231 (ER−) breast carcinoma cell line. PRP-1 inhibits mesenchymal tumors. Tumor Biol. 32, 745–751 (2011). https://doi.org/10.1007/s13277-011-0176-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-011-0176-3

Keywords

Navigation