Skip to main content
Log in

New insight of exercise on dementia; combinatory effects of physical and cognitive exercise

  • Review
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Background

Dementia is a progressive neurological disorder which is clinically characterized by memory loss, behavioral symptoms, and loss of ability to live a normal life. Dementia patients may have to cope with permanent and irreversible symptoms.

Purpose of Review

Although a new drug for dementia with beta-amyloid-removal function has recently received FDA approval, the effect of delaying the progression of dementia is still insignificant, but the cost is expensive. On the other hand, studies on the effects of exercise in dementia have implied that the incidence of dementia or cognitive decline could be efficiently controlled by exercise.

Recent Findings

The cognitive neuroprotective effect of exercise was supported by cross-sectional studies in which physically fit seniors showed larger hippocampal or gray matter volumes than unfit seniors. In addition, multiple animal studies demonstrate that exercise promotes neuroplasticity through induction of neurotropic factors, with improved outcomes on cognitive functions.

Conclusion

In this review, we discuss the effects of conventional mode of physical exercise, cognitive (neuromuscular) exercise, and combined exercise in the prevention of dementia, and highlight the prospects for new exercise programs using digital technology that are being recently developed to reduce cognitive decline. Exercise should be importantly considered as a non-pharmacological therapeutic strategy for cognitive decline and dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The datasets used during the present study are available from the corresponding author upon reasonable request.

References

  • Andel R, Crowe M, Pedersen NL, Fratiglioni L, Johansson B, Gatz M (2008) Physical exercise at midlife and risk of dementia three decades later: a population-based study of Swedish twins. J Gerontol A Biol Sci Med Sci 63(1):62–66

    Article  PubMed  Google Scholar 

  • Anderson-Hanley C, Nimon JP, Westen SC (2010) Cognitive health benefits of strengthening exercise for community-dwelling older adults. J Clin Exp Neuropsychol 32(9):996–1001

    Article  PubMed  Google Scholar 

  • Arwert LI, Deijen JB, Drent ML (2005) The relation between insulin-like growth factor I levels and cognition in healthy elderly: a meta-analysis. Growth Horm IGF Res 15(6):416–422

    Article  CAS  PubMed  Google Scholar 

  • Bahar-Fuchs A, Webb S, Bartsch L, Clare L, Rebok G, Cherbuin N, Anstey KJ (2017) Tailored and adaptive computerized cognitive training in older adults at risk for dementia: a randomized controlled trial. J Alzheimers Dis 60(3):889–911

    Article  PubMed  Google Scholar 

  • Baker LD, Frank LL, Foster-Schubert K, Green PS, Wilkinson CW, McTiernan A, Plymate SR, Fishel MA, Watson GS, Cholerton BA, Duncan GE, Mehta PD, Craft S (2010) Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol 67(1):71–79

    Article  PubMed  PubMed Central  Google Scholar 

  • Ball LJ, Birge SJ (2002) Prevention of brain aging and dementia. Clin Geriatr Med 18(3):485–503

    Article  PubMed  Google Scholar 

  • Ballard C, O’Sullivan MJ (2013) Alzheimer disease and stroke: cognitive and neuroimaging predictors of AD and stroke. Nat Rev Neurol 9(11):605–606

    Article  PubMed  Google Scholar 

  • Bauermeister S, Bunce D (2016) Aerobic fitness and intraindividual reaction time variability in middle and old age. J Gerontol B Psychol Sci Soc Sci 71(3):431–438

    Article  PubMed  Google Scholar 

  • Beck C, Heacock P, Mercer S, Thatcher R, Sparkman C (1988) The impact of cognitive skills remediation training on persons with Alzheimer’s disease or mixed dementia. J Geriatr Psychiatry 21(1):73–88

    CAS  PubMed  Google Scholar 

  • Belleville S, Clement F, Mellah S, Gilbert B, Fontaine F, Gauthier S (2011) Training-related brain plasticity in subjects at risk of developing Alzheimer’s disease. Brain 134(Pt 6):1623–1634

    Article  PubMed  Google Scholar 

  • Belleville S, Mellah S, de Boysson C, Demonet JF, Bier B (2014) The pattern and loci of training-induced brain changes in healthy older adults are predicted by the nature of the intervention. PLoS ONE 9(8):e102710

    Article  PubMed  PubMed Central  Google Scholar 

  • Bherer L (2015) Cognitive plasticity in older adults: effects of cognitive training and physical exercise. Ann N Y Acad Sci 1337:1–6

    Article  PubMed  Google Scholar 

  • Bherer L, Erickson KI, Liu-Ambrose T (2013) A review of the effects of physical activity and exercise on cognitive and brain functions in older adults. J Aging Res 2013:657508

    PubMed  PubMed Central  Google Scholar 

  • Boucard GK, Albinet CT, Bugaiska A, Bouquet CA, Clarys D, Audiffren M (2012) Impact of physical activity on executive functions in aging: a selective effect on inhibition among old adults. J Sport Exerc Psychol 34(6):808–827

    Article  PubMed  Google Scholar 

  • Brown AD, McMorris CA, Longman RS, Leigh R, Hill MD, Friedenreich CM, Poulin MJ (2010) Effects of cardiorespiratory fitness and cerebral blood flow on cognitive outcomes in older women. Neurobiol Aging 31(12):2047–2057

    Article  PubMed  Google Scholar 

  • Brustio PR, Rabaglietti E, Formica S, Liubicich ME (2018) Dual-task training in older adults: The effect of additional motor tasks on mobility performance. Arch Gerontol Geriatr 75:119–124

    Article  PubMed  Google Scholar 

  • Cahn-Weiner DA, Malloy PF, Rebok GW, Ott BR (2003) Results of a randomized placebo-controlled study of memory training for mildly impaired Alzheimer’s disease patients. Appl Neuropsychol 10(4):215–223

    Article  PubMed  Google Scholar 

  • Cassilhas RC, Viana VA, Grassmann V, Santos RT, Santos RF, Tufik S, Mello MT (2007) The impact of resistance exercise on the cognitive function of the elderly. Med Sci Sports Exerc 39(8):1401–1407

    Article  PubMed  Google Scholar 

  • Clemenson GD, Stark CE (2015) Virtual environmental enrichment through video games improves hippocampal-associated memory. J Neurosci 35(49):16116–16125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coelho FG, Vital TM, Stein AM, Arantes FJ, Rueda AV, Camarini R, Teodorov E, Santos-Galduroz RF (2014) Acute aerobic exercise increases brain-derived neurotrophic factor levels in elderly with Alzheimer’s disease. J Alzheimers Dis 39(2):401–408

    Article  CAS  PubMed  Google Scholar 

  • Colcombe S, Kramer AF (2003) Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci 14(2):125–130

    Article  PubMed  Google Scholar 

  • Colcombe SJ, Erickson KI, Raz N, Webb AG, Cohen NJ, McAuley E, Kramer AF (2003) Aerobic fitness reduces brain tissue loss in aging humans. J Gerontol A Biol Sci Med Sci 58(2):176–180

    Article  PubMed  Google Scholar 

  • Colcombe SJ, Kramer AF, McAuley E, Erickson KI, Scalf P (2004) Neurocognitive aging and cardiovascular fitness: recent findings and future directions. J Mol Neurosci 24(1):9–14

    Article  CAS  PubMed  Google Scholar 

  • Colcombe SJ, Erickson KI, Scalf PE, Kim JS, Prakash R, McAuley E, Elavsky S, Marquez DX, Hu L, Kramer AF (2006) Aerobic exercise training increases brain volume in aging humans. J Gerontol A Biol Sci Med Sci 61(11):1166–1170

    Article  PubMed  Google Scholar 

  • Connor B, Young D, Yan Q, Faull RL, Synek B, Dragunow M (1997) Brain-derived neurotrophic factor is reduced in Alzheimer’s disease. Brain Res Mol Brain Res 49(1–2):71–81

    Article  CAS  PubMed  Google Scholar 

  • Davis RN, Massman PJ, Doody RS (2001) Cognitive intervention in Alzheimer disease: a randomized placebo-controlled study. Alzheimer Dis Assoc Disord 15(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Devenney KE, Guinan EM, Kelly AM, Mota BC, Walsh C, Olde Rikkert M, Schneider S, Lawlor B (2019) Acute high-intensity aerobic exercise affects brain-derived neurotrophic factor in mild cognitive impairment: a randomised controlled study. BMJ Open Sport Exerc Med 5(1):e000499

    Article  PubMed  PubMed Central  Google Scholar 

  • Dinoff A, Herrmann N, Swardfager W, Lanctot KL (2017) The effect of acute exercise on blood concentrations of brain-derived neurotrophic factor in healthy adults: a meta-analysis. Eur J Neurosci 46(1):1635–1646

    Article  PubMed  Google Scholar 

  • Dustman RE, Ruhling RO, Russell EM, Shearer DE, Bonekat HW, Shigeoka JW, Wood JS, Bradford DC (1984) Aerobic exercise training and improved neuropsychological function of older individuals. Neurobiol Aging 5(1):35–42

    Article  CAS  PubMed  Google Scholar 

  • Erickson KI, Raji CA, Lopez OL, Becker JT, Rosano C, Newman AB, Gach HM, Thompson PM, Ho AJ, Kuller LH (2010a) Physical activity predicts gray matter volume in late adulthood: the cardiovascular health study. Neurology 75(16):1415–1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erickson KI, Boot WR, Basak C, Neider MB, Prakash RS, Voss MW, Graybiel AM, Simons DJ, Fabiani M, Gratton G, Kramer AF (2010b) Striatal volume predicts level of video game skill acquisition. Cereb Cortex 20(11):2522–2530

    Article  PubMed  PubMed Central  Google Scholar 

  • Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, Kim JS, Heo S, Alves H, White SM, Wojcicki TR, Mailey E, Vieira VJ, Martin SA, Pence BD, Woods JA, McAuley E, Kramer AF (2011) Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A 108(7):3017–3022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabel K, Wolf SA, Ehninger D, Babu H, Leal-Galicia P, Kempermann G (2009) Additive effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in mice. Front Neurosci 3:50

    PubMed  PubMed Central  Google Scholar 

  • Forbes D, Forbes SC, Blake CM, Thiessen EJ, Forbes S (2015) Exercise programs for people with dementia. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD006489.pub4

    Article  PubMed  PubMed Central  Google Scholar 

  • Gong D, Ma W, Gong J, He H, Dong L, Zhang D, Li J, Luo C, Yao D (2017) Action video game experience related to altered large-scale white matter networks. Neural Plast 2017:7543686

    Article  PubMed  PubMed Central  Google Scholar 

  • Gregoire CA, Berryman N, St-Onge F, Vu TTM, Bosquet L, Arbour N, Bherer L (2019) Gross motor skills training leads to increased brain-derived neurotrophic factor levels in healthy older adults: a pilot study. Front Physiol 10:410

    Article  PubMed  PubMed Central  Google Scholar 

  • Grinberg LT, Heinsen H (2010) Toward a pathological definition of vascular dementia. J Neurol Sci 299(1–2):136–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Groot C, Hooghiemstra AM, Raijmakers PG, van Berckel BN, Scheltens P, Scherder EJ, van der Flier WM, Ossenkoppele R (2016) The effect of physical activity on cognitive function in patients with dementia: a meta-analysis of randomized control trials. Ageing Res Rev 25:13–23

    Article  CAS  PubMed  Google Scholar 

  • Hampstead BM, Stringer AY, Stilla RF, Deshpande G, Hu X, Moore AB, Sathian K (2011) Activation and effective connectivity changes following explicit-memory training for face-name pairs in patients with mild cognitive impairment: a pilot study. Neurorehabil Neural Repair 25(3):210–222

    Article  PubMed  Google Scholar 

  • Hollamby A, Davelaar EJ, Cadar D (2017) Increased physical fitness is associated with higher executive functioning in people with dementia. Front Public Health 5:346

    Article  PubMed  PubMed Central  Google Scholar 

  • Holsinger RM, Schnarr J, Henry P, Castelo VT, Fahnestock M (2000) Quantitation of BDNF mRNA in human parietal cortex by competitive reverse transcription-polymerase chain reaction: decreased levels in Alzheimer’s disease. Brain Res Mol Brain Res 76(2):347–354

    Article  CAS  PubMed  Google Scholar 

  • Irazoki E, Contreras-Somoza LM, Toribio-Guzman JM, Jenaro-Rio C, van der Roest H, Franco-Martin MA (2020) Technologies for cognitive training and cognitive rehabilitation for people with mild cognitive impairment and dementia a systematic review. Front Psychol 11:648

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaeggi SM, Buschkuehl M, Jonides J, Perrig WJ (2008) Improving fluid intelligence with training on working memory. Proc Natl Acad Sci U S A 105(19):6829–6833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonasson LS, Nyberg L, Kramer AF, Lundquist A, Riklund K, Boraxbekk CJ (2016) Aerobic exercise intervention, cognitive performance, and brain structure: results from the physical influences on brain in aging (PHIBRA) study. Front Aging Neurosci 8:336

    PubMed  Google Scholar 

  • Karssemeijer EGA, Aaronson JA, Bossers WJ, Smits T, Olde Rikkert MGM, Kessels RPC (2017) Positive effects of combined cognitive and physical exercise training on cognitive function in older adults with mild cognitive impairment or dementia: a meta-analysis. Ageing Res Rev 40:75–83

    Article  PubMed  Google Scholar 

  • Karssemeijer EGA, Aaronson JA, Bossers WJR, Donders R, Olde Rikkert MGM, Kessels RPC (2019) The quest for synergy between physical exercise and cognitive stimulation via exergaming in people with dementia: a randomized controlled trial. Alzheimers Res Ther 11(1):3

    Article  PubMed  PubMed Central  Google Scholar 

  • Kivipelto M, Ngandu T, Fratiglioni L, Viitanen M, Kareholt I, Winblad B, Helkala EL, Tuomilehto J, Soininen H, Nissinen A (2005) Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Arch Neurol 62(10):1556–1560

    Article  PubMed  Google Scholar 

  • Kramer AF, Hahn S, Cohen NJ, Banich MT, McAuley E, Harrison CR, Chason J, Vakil E, Bardell L, Boileau RA, Colcombe A (1999) Ageing, fitness and neurocognitive function. Nature 400(6743):418–419

    Article  CAS  PubMed  Google Scholar 

  • Kuhn S, Gallinat J (2014) Amount of lifetime video gaming is positively associated with entorhinal, hippocampal and occipital volume. Mol Psychiatry 19(7):842–847

    Article  CAS  PubMed  Google Scholar 

  • Kuhn S, Gleich T, Lorenz RC, Lindenberger U, Gallinat J (2014) Playing super mario induces structural brain plasticity: gray matter changes resulting from training with a commercial video game. Mol Psychiatry 19(2):265–271

    Article  CAS  PubMed  Google Scholar 

  • Kuhn S, Lorenz R, Banaschewski T, Barker GJ, Buchel C, Conrod PJ, Flor H, Garavan H, Ittermann B, Loth E, Mann K, Nees F, Artiges E, Paus T, Rietschel M, Smolka MN, Strohle A, Walaszek B, Schumann G, Heinz A, Gallinat J, Consortium, I. (2014) Positive association of video game playing with left frontal cortical thickness in adolescents. PLoS ONE 9(3):e91506

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwak YS, Um SY, Son TG, Kim DJ (2008) Effect of regular exercise on senile dementia patients. Int J Sports Med 29(6):471–474

    Article  PubMed  Google Scholar 

  • Kyriazis M, Kiourti E (2018) Video games and other online activities may improve health in ageing. Front Med (lausanne) 5:8

    Article  PubMed  Google Scholar 

  • Lampit A, Hallock H, Valenzuela M (2014a) Computerized cognitive training in cognitively healthy older adults: a systematic review and meta-analysis of effect modifiers. PLoS Med 11(11):e1001756

    Article  PubMed  PubMed Central  Google Scholar 

  • Lampit A, Ebster C, Valenzuela M (2014b) Multi-domain computerized cognitive training program improves performance of bookkeeping tasks: a matched-sampling active-controlled trial. Front Psychol 5:794

    Article  PubMed  PubMed Central  Google Scholar 

  • Larson EB, Wang L, Bowen JD, McCormick WC, Teri L, Crane P, Kukull W (2006) Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Ann Intern Med 144(2):73–81

    Article  PubMed  Google Scholar 

  • Lashley T, Rohrer JD, Mead S, Revesz T (2015) Review: an update on clinical, genetic and pathological aspects of frontotemporal lobar degenerations. Neuropathol Appl Neurobiol 41(7):858–881

    Article  PubMed  Google Scholar 

  • Laurin D, Verreault R, Lindsay J, MacPherson K, Rockwood K (2001) Physical activity and risk of cognitive impairment and dementia in elderly persons. Arch Neurol 58(3):498–504

    Article  CAS  PubMed  Google Scholar 

  • Law LL, Barnett F, Yau MK, Gray MA (2014) Effects of combined cognitive and exercise interventions on cognition in older adults with and without cognitive impairment: a systematic review. Ageing Res Rev 15:61–75

    Article  PubMed  Google Scholar 

  • Lee Y, Choi W, Lee K, Song C, Lee S (2017) Virtual reality training with three-dimensional video games improves postural balance and lower extremity strength in community-dwelling older adults. J Aging Phys Act 25(4):621–627

    Article  PubMed  Google Scholar 

  • Lemke NC, Werner C, Wiloth S, Oster P, Bauer JM, Hauer K (2019) Transferability and sustainability of motor-cognitive dual-task training in patients with dementia: a randomized controlled trial. Gerontology 65(1):68–83

    Article  PubMed  Google Scholar 

  • Levin O, Netz Y, Ziv G (2017) The beneficial effects of different types of exercise interventions on motor and cognitive functions in older age: a systematic review. Eur Rev Aging Phys Act 14:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Li KZ, Roudaia E, Lussier M, Bherer L, Leroux A, McKinley PA (2010) Benefits of cognitive dual-task training on balance performance in healthy older adults. J Gerontol A Biol Sci Med Sci 65(12):1344–1352

    Article  PubMed  Google Scholar 

  • Liu-Ambrose T, Nagamatsu LS, Graf P, Beattie BL, Ashe MC, Handy TC (2010) Resistance training and executive functions: a 12-month randomized controlled trial. Arch Intern Med 170(2):170–178

    Article  PubMed  PubMed Central  Google Scholar 

  • Loewenstein DA, Acevedo A, Czaja SJ, Duara R (2004) Cognitive rehabilitation of mildly impaired Alzheimer disease patients on cholinesterase inhibitors. Am J Geriatr Psychiatry 12(4):395–402

    Article  PubMed  Google Scholar 

  • Long JM, Holtzman DM (2019) Alzheimer disease: an update on pathobiology and treatment strategies. Cell 179(2):312–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maderova D, Krumpolec P, Slobodova L, Schon M, Tirpakova V, Kovanicova Z, Klepochova R, Vajda M, Sutovsky S, Cvecka J, Valkovic L, Turcani P, Krssak M, Sedliak M, Tsai CL, Ukropcova B, Ukropec J (2019) Acute and regular exercise distinctly modulate serum, plasma and skeletal muscle BDNF in the elderly. Neuropeptides 78:101961

    Article  CAS  PubMed  Google Scholar 

  • Manera V, Ben-Sadoun G, Aalbers T, Agopyan H, Askenazy F, Benoit M, Bensamoun D, Bourgeois J, Bredin J, Bremond F, Crispim-Junior C, David R, De Schutter B, Ettore E, Fairchild J, Foulon P, Gazzaley A, Gros A, Hun S, Knoefel F, Olde Rikkert M, Phan Tran MK, Politis A, Rigaud AS, Sacco G, Serret S, Thummler S, Welter ML, Robert P (2017) Recommendations for the use of serious games in neurodegenerative disorders: 2016 delphi panel. Front Psychol 8:1243

    Article  PubMed  PubMed Central  Google Scholar 

  • Morris JN, Heady JA, Raffle PA, Roberts CG, Parks JW (1953) Coronary heart-disease and physical activity of work. Lancet 262(6795):1053–1057

    Article  CAS  PubMed  Google Scholar 

  • Morris JN, Chave SP, Adam C, Sirey C, Epstein L, Sheehan DJ (1973) Vigorous exercise in leisure-time and the incidence of coronary heart-disease. Lancet 1(7799):333–339

    Article  CAS  PubMed  Google Scholar 

  • Murialdo G, Barreca A, Nobili F, Rollero A, Timossi G, Gianelli MV, Copello F, Rodriguez G, Polleri A (2001) Relationships between cortisol, dehydroepiandrosterone sulphate and insulin-like growth factor-I system in dementia. J Endocrinol Invest 24(3):139–146

    Article  CAS  PubMed  Google Scholar 

  • Narme P (2016) Benefits of game-based leisure activities in normal aging and dementia. Geriatr Psychol Neuropsychiatr Vieil 14(4):420–428

    PubMed  Google Scholar 

  • Nascimento CM, Pereira JR, Pires de Andrade L, Garuffi M, Ayan C, Kerr DS, Talib LL, Cominetti MR, Stella F (2015) Physical exercise improves peripheral BDNF levels and cognitive functions in mild cognitive impairment elderly with different bdnf Val66Met genotypes. J Alzheimers Dis 43(1):81–91

    Article  CAS  PubMed  Google Scholar 

  • Nemeth VL, Must A, Horvath S, Kiraly A, Kincses ZT, Vecsei L (2017) Gender-specific degeneration of dementia-related subcortical structures throughout the lifespan. J Alzheimers Dis 55(3):865–880

    Article  PubMed  Google Scholar 

  • Netz Y (2019) Is there a preferred mode of exercise for cognition enhancement in older age?-a narrative review. Front Med (lausanne) 6:57

    Article  PubMed  Google Scholar 

  • Netz Y, Dwolatzky T, Zinker Y, Argov E, Agmon R (2011) Aerobic fitness and multidomain cognitive function in advanced age. Int Psychogeriatr 23(1):114–124

    Article  PubMed  Google Scholar 

  • Nicolini C, Michalski B, Toepp SL, Turco CV, D’Hoine T, Harasym D, Gibala MJ, Fahnestock M, Nelson AJ (2020) A single bout of high-intensity interval exercise increases corticospinal excitability, brain-derived neurotrophic factor, and uncarboxylated osteolcalcin in sedentary. Healthy Males Neurosci 437:242–255

    CAS  Google Scholar 

  • Northey JM, Cherbuin N, Pumpa KL, Smee DJ, Rattray B (2018) Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis. Br J Sports Med 52(3):154–160

    Article  PubMed  Google Scholar 

  • Olson AK, Eadie BD, Ernst C, Christie BR (2006) Environmental enrichment and voluntary exercise massively increase neurogenesis in the adult hippocampus via dissociable pathways. Hippocampus 16(3):250–260

    Article  CAS  PubMed  Google Scholar 

  • Organization WH (2017) Global action plan on the public health response to dementia 2017–2025

  • Outeiro TF, Koss DJ, Erskine D, Walker L, Kurzawa-Akanbi M, Burn D, Donaghy P, Morris C, Taylor JP, Thomas A, Attems J, McKeith I (2019) Dementia with Lewy bodies: an update and outlook. Mol Neurodegener 14(1):5

    Article  PubMed  PubMed Central  Google Scholar 

  • Owen AM, Hampshire A, Grahn JA, Stenton R, Dajani S, Burns AS, Howard RJ, Ballard CG (2010) Putting brain training to the test. Nature 465(7299):775–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paffenbarger RS Jr, Blair SN, Lee IM (2001) A history of physical activity, cardiovascular health and longevity: the scientific contributions of Jeremy N Morris, DSc, DPH. FRCP Int J Epidemiol 30(5):1184–1192

    Article  PubMed  Google Scholar 

  • Papp KV, Walsh SJ, Snyder PJ (2009) Immediate and delayed effects of cognitive interventions in healthy elderly: a review of current literature and future directions. Alzheimers Dement 5(1):50–60

    Article  PubMed  Google Scholar 

  • Park H, Park JH, Na HR, Hiroyuki S, Kim GM, Jung MK, Kim WK, Park KW (2019) Combined intervention of physical activity, aerobic exercise, and cognitive exercise intervention to prevent cognitive decline for patients with mild cognitive impairment: a randomized controlled clinical study. J Clin Med 8(7):940

    Article  PubMed  PubMed Central  Google Scholar 

  • Parvin E, Mohammadian F, Amani-Shalamzari S, Bayati M, Tazesh B (2020) Dual-task training affect cognitive and physical performances and brain oscillation ratio of patients with Alzheimer’s disease: a randomized controlled trial. Front Aging Neurosci 12:605317

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng S, Wuu J, Mufson EJ, Fahnestock M (2005) Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer’s disease. J Neurochem 93(6):1412–1421

    Article  CAS  PubMed  Google Scholar 

  • Peretz C, Korczyn AD, Shatil E, Aharonson V, Birnboim S, Giladi N (2011) Computer-based, personalized cognitive training versus classical computer games: a randomized double-blind prospective trial of cognitive stimulation. Neuroepidemiology 36(2):91–99

    Article  PubMed  Google Scholar 

  • Phillips HS, Hains JM, Armanini M, Laramee GR, Johnson SA, Winslow JW (1991) BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer’s disease. Neuron 7(5):695–702

    Article  CAS  PubMed  Google Scholar 

  • Quayhagen MP, Quayhagen M, Corbeil RR, Hendrix RC, Jackson JE, Snyder L, Bower D (2000) Coping with dementia: evaluation of four nonpharmacologic interventions. Int Psychogeriatr 12(2):249–265

    Article  CAS  PubMed  Google Scholar 

  • Rabipour S, Raz A (2012) Training the brain: fact and fad in cognitive and behavioral remediation. Brain Cogn 79(2):159–179

    Article  PubMed  Google Scholar 

  • Rasmussen P, Brassard P, Adser H, Pedersen MV, Leick L, Hart E, Secher NH, Pedersen BK, Pilegaard H (2009) Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp Physiol 94(10):1062–1069

    Article  CAS  PubMed  Google Scholar 

  • Ratnavalli E, Brayne C, Dawson K, Hodges JR (2002) The prevalence of frontotemporal dementia. Neurology 58(11):1615–1621

    Article  CAS  PubMed  Google Scholar 

  • Ray NR, O’Connell MA, Nashiro K, Smith ET, Qin S, Basak C (2017) Evaluating the relationship between white matter integrity, cognition, and varieties of video game learning. Restor Neurol Neurosci 35(5):437–456

    PubMed  Google Scholar 

  • Rezola-Pardo C, Hervas G, Arrieta H, Hernandez-de Diego A, Ruiz-Litago F, Gil SM, Rodriguez-Larrad A, Irazusta J (2020) Physical exercise interventions have no effect on serum BDNF concentration in older adults living in long-term nursing homes. Exp Gerontol 139:111024

    Article  PubMed  Google Scholar 

  • Rossor MN (1982) Neurotransmitters and CNS disease. Dementia Lancet 2(8309):1200–1204

    Article  CAS  PubMed  Google Scholar 

  • Saraulli D, Costanzi M, Mastrorilli V, Farioli-Vecchioli S (2017) The long run: neuroprotective effects of physical exercise on adult neurogenesis from youth to old age. Curr Neuropharmacol 15(4):519–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwenk M, Zieschang T, Oster P, Hauer K (2010) Dual-task performances can be improved in patients with dementia: a randomized controlled trial. Neurology 74(24):1961–1968

    Article  PubMed  Google Scholar 

  • Seifert T, Brassard P, Wissenberg M, Rasmussen P, Nordby P, Stallknecht B, Adser H, Jakobsen AH, Pilegaard H, Nielsen HB, Secher NH (2010) Endurance training enhances BDNF release from the human brain. Am J Physiol Regul Integr Comp Physiol 298(2):R372–R377

    Article  CAS  PubMed  Google Scholar 

  • Sevigny J, Suhy J, Chiao P, Chen T, Klein G, Purcell D, Oh J, Verma A, Sampat M, Barakos J (2016) Amyloid PET screening for enrichment of early-stage Alzheimer disease clinical trials: experience in a phase 1b clinical trial. Alzheimer Dis Assoc Disord 30(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Simons DJ, Boot WR, Charness N, Gathercole SE, Chabris CF, Hambrick DZ, Stine-Morrow EA (2016) Do “brain-training” programs work? Psychol Sci Public Interest 17(3):103–186

    Article  PubMed  Google Scholar 

  • Sofi F, Valecchi D, Bacci D, Abbate R, Gensini GF, Casini A, Macchi C (2011) Physical activity and risk of cognitive decline: a meta-analysis of prospective studies. J Intern Med 269(1):107–117

    Article  CAS  PubMed  Google Scholar 

  • Stanmore E, Stubbs B, Vancampfort D, de Bruin ED, Firth J (2017) The effect of active video games on cognitive functioning in clinical and non-clinical populations: a meta-analysis of randomized controlled trials. Neurosci Biobehav Rev 78:34–43

    Article  PubMed  Google Scholar 

  • Tanaka S, Ikeda H, Kasahara K, Kato R, Tsubomi H, Sugawara SK, Mori M, Hanakawa T, Sadato N, Honda M, Watanabe K (2013) Larger right posterior parietal volume in action video game experts: a behavioral and voxel-based morphometry (VBM) study. PLoS One 8(6):e66998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Techayusukcharoen R, Iida S, Aoki C (2019) Observing brain function via functional near-infrared spectroscopy during cognitive program training (dual task) in young people. J Phys Ther Sci 31(7):550–555

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas AG, Dennis A, Bandettini PA, Johansen-Berg H (2012) The effects of aerobic activity on brain structure. Front Psychol 3:86

    Article  PubMed  PubMed Central  Google Scholar 

  • Torres-Aleman I (2008) Mouse models of Alzheimer’s dementia: current concepts and new trends. Endocrinology 149(12):5952–5957

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela MJ, Matthews FE, Brayne C, Ince P, Halliday G, Kril JJ, Dalton MA, Richardson K, Forster G, Sachdev PS, Medical Research Council Cognitive, F.; Ageing, S (2012) Multiple biological pathways link cognitive lifestyle to protection from dementia. Biol Psychiatry 71(9):783–791

    Article  PubMed  Google Scholar 

  • van Praag H (2008) Neurogenesis and exercise: past and future directions. Neuromolecular Med 10(2):128–140

    Article  PubMed  Google Scholar 

  • van Praag H, Shubert T, Zhao C, Gage FH (2005) Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci 25(38):8680–8685

    Article  PubMed  PubMed Central  Google Scholar 

  • van Uffelen JG, Chin APMJ, Hopman-Rock M, van Mechelen W (2008a) The effects of exercise on cognition in older adults with and without cognitive decline: a systematic review. Clin J Sport Med 18(6):486–500

    Article  PubMed  Google Scholar 

  • van Uffelen JG, Chinapaw MJ, van Mechelen W, Hopman-Rock M (2008b) Walking or vitamin B for cognition in older adults with mild cognitive impairment? a randomised controlled trial. Br J Sports Med 42(5):344–351

    Article  PubMed  Google Scholar 

  • Vogiatzis I, Louvaris Z, Habazettl H, Athanasopoulos D, Andrianopoulos V, Cherouveim E, Wagner H, Roussos C, Wagner PD, Zakynthinos S (2011) Frontal cerebral cortex blood flow, oxygen delivery and oxygenation during normoxic and hypoxic exercise in athletes. J Physiol 589(Pt 16):4027–4039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei S, Mai Y, Peng W, Ma J, Sun C, Li G, Liu Z (2020) The effect of nonpharmacologic therapy on global cognitive functions in patients with Alzheimer’s disease: an updated meta-analysis of randomized controlled trials. Int J Neurosci 130(1):28–44

    Article  PubMed  Google Scholar 

  • Yamada M, Komatsu J, Nakamura K, Sakai K, Samuraki-Yokohama M, Nakajima K, Yoshita M (2020) Diagnostic criteria for dementia with Lewy bodies: updates and future directions. J Mov Disord 13(1):1–10

    Article  PubMed  Google Scholar 

  • Zarit SH, Cole KD, Guider RL (1981) Memory training strategies and subjective complaints of memory in the aged. Gerontologist 21(2):158–164

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Huntley J, Bhome R, Holmes B, Cahill J, Gould RL, Wang H, Yu X, Howard R (2019) Effect of computerised cognitive training on cognitive outcomes in mild cognitive impairment: a systematic review and meta-analysis. BMJ Open. https://doi.org/10.1136/bmjopen-2018-027062

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng G, Xia R, Zhou W, Tao J, Chen L (2016) Aerobic exercise ameliorates cognitive function in older adults with mild cognitive impairment: a systematic review and meta-analysis of randomised controlled trials. Br J Sports Med 50(23):1443–1450

    Article  PubMed  Google Scholar 

  • Zinke K, Zeintl M, Rose NS, Putzmann J, Pydde A, Kliegel M (2014) Working memory training and transfer in older adults: effects of age, baseline performance, and training gains. Dev Psychol 50(1):304–315

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Hong’s Lab members for reviewing this manuscript.

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded (NRF-2020S1A5B5A17090342) to H.J. Cha and the National Research Council of Science & Technology (NST) grant from the Korean government (MIST) (CAP21023-000) to J.H. Park.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: H.J.C., J.H.P. and C.H.; writing—original draft preparation: H.J.C. and C.H.; writing—review and editing: H.J.C., J.H.P. and C.H.; funding acquisition: J.H.P. and H.J.C. We have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Jun Hong Park or Changwan Hong.

Ethics declarations

Conflict of interest

Hyo-Jeong Cha declares that she has no conflict of interest. Jun Hong Park declares that he has no conflict of interest. Changwan Hong declares that he has no conflict of interest. All the authors approved the manuscript.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cha, HJ., Park, J.H. & Hong, C. New insight of exercise on dementia; combinatory effects of physical and cognitive exercise. Mol. Cell. Toxicol. (2024). https://doi.org/10.1007/s13273-024-00440-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13273-024-00440-y

Keywords

Navigation