Skip to main content
Log in

Application of therapeutic protein-based fusion toxins

  • Review Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Purpose of review

Protein-based therapeutics have been applied for decades to remove most malignant tumors. Many anti-tumor drugs using antibodies have been developed and put to practical use. However, due to limitations of antibodies such as tolerance, high molecular weight, and poor tissue penetration, new types of fusion proteins have been developed for therapeutic purposes. In this study, we review the recent therapeutic trials and improvements of fusion protein toxins.

Recent findings

As a targeting moiety, non-Ig scaffolds have not only the advantages of immunoglobulin such as high affinity and selectivity, but also small size, high stability, high yield expression. As a toxic moiety, non-immunologic and highly toxic endogenous proteins of human origin like proapoptotic protein or RNase are challenged. To lessen the adverse reactions of fusion toxins, several therapeutic strategies such as removal of epitopes, increase of serum half-life were developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scott, A. M., Allison, J. P. & Wolchok, J. D. Antibody therapy of cancer. Nature Rev Cancer 12, 278–287 (2012).

    Article  CAS  Google Scholar 

  2. Kintzing, J. R., Filsinger Interrante, M. V. & Cochran, J. R. Emerging strategies for developing next-generation protein therapeutics for cancer treatment. Trends in Phar Sci 37, 993–1008 (2016).

    Article  CAS  Google Scholar 

  3. Chames, P., Van Regenmortel, M., Weiss, E. & Baty, D. Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol 157, 220–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gill, M. R., Falzone, N., Du, Y. & Vallis, K. A. Targeted radionuclide therapy in combined-modality regimens. Lancet Oncol 18, 414–423 (2017).

    Article  Google Scholar 

  5. Lambert, J. M. Drug-conjugated antibodies for the treatment of cancer. Br J Clin Pharmacol 76, 248–262 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Pastan, I., Hassan, R., FitzGerald, D. J. & Kreitman, R. J. Immunotoxin treatment of cancer. Annu Rev Med 58, 221–237 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Wayne, A. S., Fitzgerald, D. J., Kreitman, R. J. & Pastan, I. Immunotoxins for leukemia. Blood 123, 2470–2477 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carlsson, J. et al. HER2 expression in breast cancer primary tumours and corresponding metastases. Br J Cancer 90, 2344–2348 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Skrlec, K., Strukelj, B. & Berlec, A. Non-immunoglobulin scaffolds: a focus on their targets. Trends Biotechnol 33, 408–418 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Polito, L., Djemil, A. & Bortolotti, M. Plant toxin-based immunotoxins for cancer theraypy: a short overview. Biomedicines 4, 12 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  11. Yamaizumi, M., Mekada, E., Uchida, T. & Okada, Y. One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell 15, 245–250 (1978).

    Article  CAS  PubMed  Google Scholar 

  12. Akbari, B. et al. Immunotoxins in cancer therapy: Review and update. Int Rev Immunol 4, 207–219 (2017).

    Article  CAS  Google Scholar 

  13. Antignani, A. & FitzGerald, D. Immunotoxins: The role of the toxin. Toxins 5, 1486–1502 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Alewine, C., Hassan, R. & Pastan, I. Advances in anticancer immunotoxin therapy. The Oncologist 20, 176–185 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mossoba, M. E. et al. Pentostatin plus cyclophosphamide safely and effectively prevents immunotoxin immunogenicity in murine hosts. Clin Cancer Res 17, 3697–3705 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hassan, R. et al. Major cancer regressions in mesothelioma after treatment with an anti-mesothelin immunotoxin and immune suppression. Sci Transl Med 5, 208ra (2013).

    Article  CAS  Google Scholar 

  17. Foss, F. Clinical experience with denileukin diftitox (ONTAK). Semin Oncol 33, S11–S16 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Nakase, K. et al. Differential expression of interleukin-2 receptors (alpha and beta chain) in mature lymphoid neoplasms. Am J Hematol 46, 179–183 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Li, M. et al. Clinical targeting recombinant immunotoxins for cancer therapy. Onco Targets Ther 10, 3645–3565 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hossann, M. et al. Novel immunotoxin: A fusion protein consisting of gelonin and an acetylcholine receptor fragment as a potential immunotherapeutic agent for the treatment of Myasthenia gravis. Protein Expr Purif 46, 73–84 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Goldberg, M. R. et al. Phase I clinical study of the recombinant oncotoxin TP40 in superficial bladder cancer. Clin Cancer Res 1, 57–61 (1995).

    CAS  PubMed  Google Scholar 

  22. Kreitman, R. J. Immunotoxins for targeted cancer therapy. AAPS J 18, E532–E551 (2006).

    Article  Google Scholar 

  23. Stahl, S. et al. Affibody molecules in biotechnological and medical applications. Trends Biotech 35, 691–712 (2017).

    Article  CAS  Google Scholar 

  24. Loefblom, J. et al. Affibody molecules: Engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Lett 584, 2670–2680 (2010).

    Article  CAS  Google Scholar 

  25. Zielinski, R. et al. Affitoxin-a novel recombinant, HER2-specific, anticancer agent for targeted therapy of HER2-positive tumors. J Immunother 32, 817–825 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, H., Seijsing, J., Frejd, F. Y., Tolmachev, V. & Gräslund, T. Target-specific cytotoxic effects on HER2-ex-pressing cells by the tripartite fusion toxin ZHER2:2891-ABD-PE38X8, including a targeting affibody molecule and a half-life extension domain. Int J Oncol 47, 601–609 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Stumpp, M. T., Binz, H. K. & Amstutz, P. DARPins: A new generation of protein therapeutics. Drug Discov Today 13, 695–701 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Martin-Killas, P., Stefan, N., Rothschild, S., Plückthun, A. & Zangemeister-Wittke, U. A novel fusion toxin derived from an EpCAM-specific designed ankyrin repeat protein has potent antitumor activity. Clin Cancer Res 17, 100–110 (2011).

    Article  Google Scholar 

  29. Michalska, M. & Wolf, P. Pseudomonas Exotoxin A: optimized by evolution for effective killing. Front Microbiol 6, 963–969 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Odumosu, O., Nicholas, D., Yano, H. & Langridge, W. AB toxins: a paradigm switch from deadly to desirable. Toxins 2, 1612–1645 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Seetharam, S., Chaudhary, V. K., FitzGerald, D. & Pastan, I. Increased cytotoxic activity of Pseudomonas exotoxin and two chimeric toxins ending in KDEL. J Biol Chem 266, 17376–17381 (1991).

    CAS  PubMed  Google Scholar 

  32. Weldon, J. E. et al. A protease-resistant immunotoxin against CD22 with greatly increased activity against CLL and diminished animal toxicity. Blood 113, 3792–3800 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pederzolli, C., Belmonte, G., Serra, M. D., Macek, P. & Menestrina, G. Biochemical and Cytotoxic Properties of Conjugates of Transferrin with Equinatoxin II, a Cytolysin from a Sea Anemone. Bioconjug Chem 6, 166–173 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Sutherland, R. et al. Ubiquitous cell-surface glycoprotein on tumor cells is proliferation associated receptor for transferrin. Proc Natl Acad Sci USA 78, 4515–4519 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Inoshima, I. et al. A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice. Nat Med 17, 1310–1314 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zahaf, N. I. & Schmidt, G. Bacterial toxins for cancer therapy. Toxins 9, 236 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  37. Endo, Y. & Tsurugi, K. RNA N-glycodase activity of ricin A-chain. Mechanism of action of the toxic lectin ricin on eukaryotic ribosimes. J Biol Chem 262, 8128–8130 (1987).

    CAS  PubMed  Google Scholar 

  38. Stirpe, F. & Battelli, M. G. Ribosome-inactivating proteins: Progress and problems. Cell Mol Life Sci 63, 1850–1866 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Bolognesi, A. et al. Ribosome-inactivating and adenine polynucleotide glycosylase activities in Mirabilis jaapa L. tussues. J Biol Chem 277, 13709–13716 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Polito, L. et al. Saporin induces multiple death pathways in lymphoma cells with different intensity and timing as compared to ricin. Int J Biochem Cell Biol 41, 1055–1061 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Rosenblum, M. G. et al. Amino acid sequence analysis, gene construction, cloning, and expression of gelonin, a toxin derived from Gelonium multiflorum. J Interferon Cytokine Res 15, 547–555 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Falini, B. et al. Response of refractory Hodgkin’s disease to monoclonal anti-CD30 immunotoxins. Lancet 339, 1195–1197 (1992).

    Article  CAS  PubMed  Google Scholar 

  43. Polito, L., Bortolotti, M., Mercatelli, D., Battelli, M. G. & Bolognesi, A. Saporin-S6: a useful tool in cancer therapy. Toxins 5, 1698–1722 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Giansanti, F., Flavell, D. J., Angelucci, F., Fabbrini, M. S. & Ippoliti, R. Strategies to improve the clinical utility of saporin-based targeted toxins. Toxins 10, 82–41 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  45. Bortolotti, M., Bolognesi, A. & Polito, L. Bouganin, an attractive weapon for immunotoxins. Toxins 10, 323–332 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  46. Cizeau, J., Grenkow, D. M., Brown, J. G., Entwistle, J. & MacDonald, G. C. Engineering and biological characterization of VB6-845, an anti-EpCAM immunotoxin containing a T-cell epitope-depleted variant of the plant toxin bouganin. J Immunother 32, 674–584 (2009).

    Article  CAS  Google Scholar 

  47. Dillon, R. L. et al. Trastuzumab-deBouganin conjugate overcomes multiple mechanisms of T-DM1 drug resistance. J Immunother 39, 117–126 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Chooniedass, S. et al. DeBouganin diabody fusion protein overcomes drug resistance to ADCs comprised of anti-microtubule agents. Molecules 21, 1741–1487 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  49. Słomińska-Wojewódzka, M. & Sandvig, K. Ricin and ricin-containing immunotoxins: insights into intracellular transport and mechanism of action in vitro. Antibodies 2, 236–269 (2013).

    Article  CAS  Google Scholar 

  50. Mathew, M. & Verma, R. S. Humanized immunotoxins: A new generation of immunotoxins for targeted cancer therapy. Cancer Sci 100, 1359–1365 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Thornberry, N. A. et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem 272, 17907–17911 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Kurschus, F. C. & Jenne, D. E. Delivery and therapeutic potential of human granzyme B. Immunol Rev 235, 149–175 (2010).

    Article  CAS  Google Scholar 

  53. Hlongwane, P. et al. Human granzyme B based targeted cytolytic fusion proteins. Biomedicines 6, 72–82 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  54. Lossaso, V., Schiffer, S., Barth, S. & Carloni, P. Design of human granzyme B variants resistant to serpin B9. Proteins Struct Funct Bioinform 80, 2514–2522 (2012).

    Article  CAS  Google Scholar 

  55. Hetzel, C. et al. Small cleavable adapters enhance the specific cytotoxicity of a humanized immunotoxin directed against CD64-positive cells. J Immunother 31, 370–376 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Jordaan, S. et al. Updates in the development of immunoRNase for the selective killing of tumor cells. Biomedicines 6, 28–40 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  57. Deonarain, M. & Epenetos, A. Targeting enzymes for cancer therapy: Old enzymes in new roles. Br J Cancer 70, 786–794 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Edelweiss, E. et al. Barnase as a new therapeutic agent triggering apoptosis in human cancer cells. PLoS ONE 3, e2434 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Ardelt, W., Shogen, K. & Darzynkiewicz, Z. Onconase and amphinase, the antitumor ribonucleases from Rana pipiens oocytes. Curr Pharm Biotechnol 9, 215–225 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yuki, S., Kondo, Y., Kato, F., Kato, M. & Matsuo, N. Noncytotoxic ribonuclease, RNase T1, induces tumor cell death via hemagglutinating virus of Japan envelope vector. Eur J Biochem 271, 3567–3572 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Newton, D. L., Nicholls, P. J., Rybak, S. M. & Youle, R. J. Expression and characterization of recombinant human eosinophil-derived neurotoxin and eosinophil-derived neurotoxin-anti-transferrin receptor sFv. J Biol Chem 269, 26739–26745 (1994).

    CAS  PubMed  Google Scholar 

  62. Rybak, S. M. et al. Humanization of immunotoxins. Proc Natl Acad Sci USA 89, 3165–3169 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Saxena, S., Rybak, S., Davey, R., Youle, R. J. & Ackerman, E. J. Angiogenin is a cytotoxic, tRNA-specific ribonuclease in the RNase A superfamily. J Biol Chem 267, 21982–21986 (1992).

    CAS  PubMed  Google Scholar 

  64. Akinrinmade, O. A. et al. Human MAP tau based targeted cytolytic fusion proteins. Biomedicines 5, 36–47 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  65. Hristodorov, D. et al. Microtubule-associated protein tau facilitates the targeted killing of proliferating cancer cells in vitro and in a xenograft mouse tumor model in vivo. Br J Cancer 109, 1570–1578 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hristodorov, D. et al. Human microtubule-associated protein tau mediates targeted killing of CD30+ lymphoma cells in vitro and inhibits tumour growth in vivo. Br J Haematol 164, 251–257 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Hristodorov, D., Amoury, M., Mladenov, R., Niesen, J. & Arens, K. EpCAM-selective elimination of carcinoma cells by a novel MAP-based cytolytic fusion protein. Mol Cancer Ther 13, 2194–2202 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Mladenov, R. et al. CD64-directed microtubule associated protein tau kills leukemic blasts ex vivo. Leukemia 7, 67166–67174 (2016).

    Google Scholar 

  69. Gresch, G. et al. Elimination of different leukemia subtypes using novel CD89-specific human cytolytic fusion proteins. Br J Hematol 183, 313–317 (2018).

    Article  Google Scholar 

  70. Spiess, K., Jakobsen, M. H., Kledal, T. N. & Rosenkilde, M. M. The future of antiviral immunotoxins. J Leukoc Biol 99, 911–925 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Berger, E. A. & Pastan, I. Immunotoxin complementation of HAART to deplete persisting HIV-infected cell reservoirs. PLoS Pathog 6, e1000803 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Sadraeian, M. et al. Selective cytotoxicity of a novel immunotoxin based on pulchellin A chain for cells expressing HIV envelope. Sci Rep 7, 7579–7590 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Ramachandran, R. V., Katzenstein, D. A., Wood, R., Batts, D. H. & Merigan, T. C. Failure of short-term CD4-PE40 infusions to reduce virus load in human immunodeficiency virus-infected persons. J Infect Dis 170, 1009–1013 (1994).

    Article  CAS  PubMed  Google Scholar 

  74. Aullo, P. et al. A recombinant diphtheria toxin related human CD4 fusion protein specifically kills HIV infected cells which express gp120 but selects fusion toxin resistant cells which carry HIV. EMBO J 11, 575–583 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pincus, S. H. et al. Design and in vivo characterization of immunoconjugates targeting HIV gp160. J Virol 91, e01360–16 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Pincus, S. H. et al. Identification of human anti-HIV gp160 monoclonal antibodies that make effective immunotoxins. J Virol 91, e01955–16 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Baluna, R. & Vitetta E. S. Vascular leak syndrome: a side effect of immunotherapy. Immunopharmacology 37, 117–132 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Kuan, C. T., Pai, L. H. & Pastan, I. Immuntoxins containing Pseudomonas exotoxin that target LeY damage human endothelial cells in an antibody-specific mode: Relevance to vascular leak syndrome. Clin Cancer Res 1, 1589–1594 (1995).

    CAS  PubMed  Google Scholar 

  79. Weldon, J. E. et al. A recombinant immunotoxin against the tumor-associated antigen mesothelin reengineered for high activity, low off-target toxicity, and reduced an-tigenicity. Mol Cancer Ther 12, 48–57 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Kreitman, R. J. Immunoconjugates and new molecular targets in hairy cell leukemia. Hematology 2012, 660–666 (2012).

    PubMed  Google Scholar 

  81. Bera, T. K., Onda, M., Kreitman, R. J. & Pastan, I. An improved recombinant Fab-immunotoxin targeting CD22 expressing malignancies. Leuk Res 38, 1224–1229 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tsutsumi, Y. et al. Site-specific chemical modification with polyethylene glycol of recombinant immunotoxin anti-Tac (Fv)-PE38 (LMB-2) improves antitumor activity and reduces animal toxicity and immunogenicity. Proc Natl Acad Sci USA 97, 8548–8553 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Liu, W. et al. Recombinant immunotoxin engineered for low immunogenicity and antigenicity by identifying and silencing human B-cell epitopes Proc Natl Acad Sci USA 109, 11782–11787 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. King, C. et al. Removing T-cell epitopes with computational protein design. Proc Natl Acad Sci USA 111, 8577–8582 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mazor, R. et al. Tolerogenic nanoparticlesrestore the antitumor activity of recombinant immunotoxins by mitigating immunogenicity. Proc Natl Acad Sci USA 115, E733–E742 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kreitman, R. J. et al. Phase I trial of anti-CD22 recombinant immunotoxin Moxetumomab pasudotox (CAT8015 or HA22) in patients with hairy cell leukemia. J Clin Oncol 30, 1822–1828 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Guo, R. et al. Fusion of an albumin-binding domain extends the half-life of immunotoxins. Int J Pharm 511, 538–549 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Wang, Y., Tian, Z., Thirumalai, D. & Zhang, X. Neonatal Fc receptor (FcRn): a novel target for therapeutic antibodies and antibody engineering. J Drug Target 22, 269–278 (2014).

    Article  PubMed  CAS  Google Scholar 

  89. Nygren, P. A. Alternative binding proteins, affibody binding proteins developed from a small three-helix bundle scaffold. FEBS J 275, 2668–2676 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Andersen, C. I. et al. Perspective-FcRn transports albumin: relevance to immunology and medicine. Trends Immunol 27, 343–348 (2006).

    Article  CAS  Google Scholar 

  91. Wei, J. et al. Recombinant immunotoxins with albuminbinging domains have long half-lives and high antitumor activity. Proc Natl Acad Sci USA 115, E3501–E3508 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The writing of this manuscript was supported by Nexmos Company (No. 20181479).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Je Cho.

Additional information

Conflict of Interest

Hyun-Jong Ahn, Cheung-Seog Park & Jeong Je Cho declare that they have no conflict of interest.

Human and animal rights

The article does not contain any studies with human and animal and this study was performed following institutional and national guidelines.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, HJ., Park, CS. & Cho, J.J. Application of therapeutic protein-based fusion toxins. Mol. Cell. Toxicol. 15, 369–381 (2019). https://doi.org/10.1007/s13273-019-0040-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-019-0040-x

Keywords

Navigation