Skip to main content
Log in

Toxic effects against bacteria of silver nanocolloids and silver nanotubes in the presence of hydra cells

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Silver nanomaterials are widely used in commercial products, because the released silver nanomaterials be worried about ecotoxicity of freshwater organisms in environment. We have focused on reducing nanotoxicity using environmentally-friendly biological process by hydra cells. The hydra has a strong regenerative capacity about toxic chemicals, excellent adhesion and aggregation of hydra cells through self-organization during hydra regeneration stages. The hydra regeneration test examined two types of silver nanocolloids (Ag NCs) and silver nanotubes (Ag NTs) at concentrations of 5, 10, 50, 100 mg/L, respectively. In addition, we compared to the antimicrobial effects against E. coli (Gram-negative) and S. aureus (Gram-positive) bacteria by Ag NCs, Ag NTs and the Ag NCs including hydra cells. The aim of this study is not only to investigate the reducing nanotoxic effects in bacteria by the mixed silver nanomaterials including hydra cells but also to compare the nanotoxicity between Ag NCs and Ag NTs. Our results suggest that the silver nanomaterials including hydra cells can be reduced to nanotoxic effects in both E. coli (Gram-negative) and S. aureus (Gram-positive) bacteria. Because, the mixed Ag NCs including hydra cell were coiled around Ag NCs, which may inhibited by Ag NCs aggregations and the blocked silver ions. Furthermore, the shapes of silver nanomaterials are different nanotoxic effects according to the species sensitivity between hydra and bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kishimoto, Y., Murate, M. & Sugiyama, T. Hydra regeneration from recombined ectodermal and endodermal tissue. I. Epibolic ectodermal spreading is driven by cell intercalation. J Cell Sci 109:763–772 (1996).

    CAS  PubMed  Google Scholar 

  2. Murate, M. et al. Hydra regeneration from recombined ectodermal and endodermal tissue II. Differential stability in the ectodermal and endodermal epithelial organization. J Cell Sci 110:1919–1934 (1997).

    CAS  PubMed  Google Scholar 

  3. Holstein, T. W. A view to kill. BMC Biol 10:1–4 (2012).

    Article  Google Scholar 

  4. Technau, U. & Holstein, T. W. Cell sorting during the regeneration of Hydra from reaggregated cells. Dev Biol 151:117–127 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Sato-Maeda, M. & Tashiro, H. Development of oriented motion in regenerating hydra cell aggregates. Zoolog Sci 16:327–334 (1999).

    Article  Google Scholar 

  6. Rieu, J. P., Upadhyaya, A., Glazier, J. A., Ouchi, N. B. & Sawada, Y. Diffusion and deformations of single hydra cells in cellular aggregates. Biophys J 79:1903–1914 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Technau, U. et al. Parameters of self-organization in Hydra aggregates. Proc Natl Acad Sci USA 97:12127–12131 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Park, H. G. & Yeo, M. K. The toxicity of triclosan, bisphenol A, bisphenol A diglycidyl ether to the regeneration of cnidarian, Hydra magnipapillata. Mol Cell Toxicol 8:209–216 (2012).

    Article  CAS  Google Scholar 

  9. Hydra anatomy, Available online at www.williamhogarth. de/HydraAnatomy3.jpg

  10. Campbell, N. A. et al. Biology, 8th ED (Pearson Education, Inc., publishing as Pearson Benjamin Cummings, 2008).

    Google Scholar 

  11. Kim, J. S. et al. Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101 (2007).

    CAS  PubMed  Google Scholar 

  12. Choi, O. K. et al. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Choi, O. K. et al. Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Res 43:1879–1886 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Dror-Ehre, A., Mamane, H., Belenkova, T., Markovich, G. & Adin, A. Silver nanoparticle-E. coli colloidal interaction in water and effect on E. coli survival. J Colloid Interface Sci 339:521–526 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Rai, M., Yadav, A. & Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Li, Q. et al. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42:4591–4602 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Gopinath, P. et al. Signaling gene cascade in silver nanoparticle induced apoptosis. Colloids Surf B Biointerfaces 77:240–245 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Prabhu, S. & Poulose, E. K. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2:1–10 (2012).

    Article  Google Scholar 

  19. Beach, M. J. & Pascoe, D. The role of Hydra vulgaris (Pallas) in assessing the toxicity of freshwater pollutants. Warter Res 32:101–106 (1998).

    Article  CAS  Google Scholar 

  20. Karntanut, W. & Pascoe, D. A comparison of methods for measuring acute toxicity to Hydra vulgaris. Chemosphere 41:1543–1548 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Karntanut, W. & Pascoe, D. The toxicity of copper, cadmium and zinc to four different Hydra (Cnidaria: Hydrozoa). Chemosphere 47:1059–1064 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Quinn, B., Gagné, F. & Blaise, C. An investigation into the acute and chronic toxicity of eleven pharmaceuticals (and their solvents) found in wastewater effluent on the cnidarian, Hydra attenuata. Sci Total Environ 389:306–314 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Quinn, B., Gagné, F. & Blaise, C. Evaluation of the acute, chronic and teratogenic effects of a mixture of eleven pharmaceuticals on the cnidarian, Hydra attenuata. Sci Total Environ 407:1072–1079 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Blaise, C., Gagné, F., Férard, J. F. & Eullaffroy, P. Ecotoxicity of selected nano-materials to aquatic organisms. Environ Toxicol 23:591–598 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Yeo, M. K. & Kang, M. The effect of nano-scale Zndoped TiO2 and pure TiO2 particles on Hydra magnipapillata. Mol Cell Toxicol 6:9–17 (2010).

    Article  CAS  Google Scholar 

  26. Quinn, B., Gagné, F. & Blaise, C. Hydra, a model system for environmental studies. Int J Dev Biol 56:613–625 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Pan, H. C., Yang, H. Q., Zhao, F. X. & Qian, X. C. Molecular cloning, sequence analysis, prokaryotic expression, and function prediction of foot-specific peroxidase in Hydra magnipapillata Chinese strain. Genet Mol Res 13:6610–6622 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Marchesano, V. et al. Imaging inward and outward trafficking of gold nanoparticles in whole animals. ACS Nano 7:2431–2442 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Takaku, Y., Hariyama, T. & Fujisawa, T. Motility of endodermal epithelial cells plays a major role in reorganizing the two epithelial layers in Hydra. Mech Dev 122:109–122 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Kasahara, S. & Bosch, T. C. Enhanced antibacterial activity in Hydra polyps lacking nerve cells. Dev Comp Immunol 27:79–85 (2003).

    Article  PubMed  Google Scholar 

  31. Jung, S. et al. Hydramacin-1, structure and antibacterial activity of a protein from the basal metazoan Hydra. J Biol Chem 284:1896–1905 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Augustin, R. et al. Activity of the novel peptide arminin against multi resistant human pathogens shows the considerable potential of phylogenetically ancient organisms as drug sources. Antimicrob Agents Chemother 53:5245–5250 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Augustin, R., Fraune, S. & Bosch, T. C. How Hydra senses and destroys microbes. Semin Immunol 22:54–58 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Gottenbos, B., Grijpma, D. W., van der Mei, H. C., Feijen, J. & Busscher, H. J. Antimicrobial effects of positively charged surfaces on adhering gram-positive and gram-negative bacteria. J Antimicrob Chemother 48:7–13 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Abbaszadegan, A. et al. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: A preliminary study. J Nanomater 2015:1–8 (2015).

    Article  Google Scholar 

  36. Arakha, M., Saleem, M., Mallick, B. C. & Jha, S. The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle. Sci Rep 5:1–10 (2015).

    Google Scholar 

  37. Morones, J. R. et al. The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Sugiyama, T. & Fujisawa, T. Genetic analysis of developmental mechanisms in Hydra. III. Characterization of a regeneration deficient strain. J Embryol Exp Morphol 42:65–77 (1977).

    Google Scholar 

  39. Bossert, P. & Galliot, B. How to use Hydra as a model system to teach biology in the classroom. Int J Dev Biol 56:637–652 (2012).

    Article  PubMed  Google Scholar 

  40. Yum, S. et al. Hydra, a candidate for an alternative model in environmental genomics. Mol Cell Toxicol 10:339–346 (2014).

    Article  CAS  Google Scholar 

  41. Wilby, O. K. “The Hydra regeneration assay,” in Proceedings of workshop organized by Association francaise de teratologie. 108–124 (1988).

    Google Scholar 

  42. Sadeghi, B. et al. Comparison of the anti-bacterial activity on the nanosilver shapes: Nanoparticles, nanorods and nanoplates. Adv Powder Technol 23:22–26 (2012).

    Article  CAS  Google Scholar 

  43. Pal, S., Tak, Y. K. & Song, J. M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu, P., Imlay, J. A. & Shang, J. K. Mechanism of Escherichia coli inactivation on palladium-modified nitrogen-doped titanium dioxide. Biomaterials 31:7526–7533 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Kyeong Yeo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, HG., Yeo, MK. Toxic effects against bacteria of silver nanocolloids and silver nanotubes in the presence of hydra cells. Mol. Cell. Toxicol. 13, 37–47 (2017). https://doi.org/10.1007/s13273-017-0004-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-017-0004-y

Keywords

Navigation