Skip to main content
Log in

Oxidative stress and gene expression in diverse tissues of Oryzias javanicus exposed to 17β-estradiol

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Transcriptional changes in the expression of stress-related genes (catalase, glutathione peroxidase, glutathione S-transferase, glutathione reductase, metallothionein, and ubiquitin) in intestinal, liver and muscle tissues of Javanese medaka (Oryzias javanicus) exposed to 17-estradiol (E2) were investigated using real-time quantitative PCR. The lipid peroxidation levels and superoxide dismutase activity in liver tissues was also examined at various exposure concentrations. In fish exposed to 10, 100 and 1000 g/L E2 the level of catalase mRNA increased significantly in intestinal and muscle tissues, while expression of the glutathione peroxidase gene showed the opposite trend in liver and muscle tissues. Expression of the glutathione S-transferase gene increased in a dose-dependent manner in liver and muscle tissues of fish exposed to E2, relative to the non-exposed control group. The level of glutathione reductase mRNA increased markedly in the liver tissues of all fish exposed to 100 and 1000 g/L E2, but decreased in intestinal tissues. The metallothionein gene was strongly downregulated in intestinal and liver tissues of fish exposed to E2, but slightly upregulated in muscle tissues. In all fish exposed to 100 and 1000 g/L E2 expression of the ubiquitin gene increased markedly in liver and muscle tissue, but not in intestinal tissues. Lipid peroxidation and superoxide dismutase activities increased significantly in all 17-estradiol treatment groups, and were correlated to the exposure concentration. Thus, E2 exposure differentially affected the transcription of a range of stress-related genes in various tissues of Javanese medaka, suggesting that analysis of transcriptional changes in these genes could be used as a rapid assay of the effects of E2 exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jobling, S. et al. Comparative responses of molluscs and fish to environmental estrogens and an estrogenic effluent. Aquat Toxicol 66:207–222 (2004).

    Article  PubMed  CAS  Google Scholar 

  2. Nash, J. P. et al. Long-term exposure to environmental concentrations of the pharmaceutical ethynylestradiol causes reproductive failure in fish. Environ Health Perspect 112:1725–1733 (2004).

    Article  PubMed  CAS  Google Scholar 

  3. Corcoran, J., Winter, M. J. & Tyler, C. R. Pharmaceuticals in the aquatic environment: a critical review of the evidence for health effects in fish. Crit Rev Toxicol 40:287–304 (2010).

    Article  PubMed  CAS  Google Scholar 

  4. James, M. O. Steroid catabolism in marine and freshwater fish. J Steroid Biochem Mol Biol 127:167–175 (2010).

    Article  PubMed  Google Scholar 

  5. Iguchi, T., Watanabe, H. & Katsu, Y. Toxicogenomics and ecotoxicogenomics for studying endocrine disruption and basic biology. Gen Comp Endocrinol 153:25–29 (2007).

    Article  PubMed  CAS  Google Scholar 

  6. Won, H., Yum, S. & Woo, S. Identification of differentially expressed genes in liver of marine medaka fish exposed to benzo[a]pyrene. Toxicol Environ Health Sci 3:39–45 (2011).

    Article  Google Scholar 

  7. Woo, S., Yum, S., Kim, D. W. & Park, H. S. Transcripts level responses in a marine medaka (Oryzias javanicus) exposed to organophosphorus pesticide. Comp Biochem Physiol C Toxicol Pharmacol 149:427–432 (2009).

    Article  PubMed  Google Scholar 

  8. Woo, S. et al. Effects of heavy metals on antioxidants and stress-responsive gene expression in Javanese medaka (Oryzias javanicus). Comp Biochem Physiol C Toxicol Pharmacol 149:289–299 (2009).

    Article  PubMed  Google Scholar 

  9. Park, H. W. et al. Gene expression profiling of HepG2 cells treated with endocrine disrupting chemicals using the HazChem human array V3. Mol Cell Toxicol 6:57–63 (2010).

    Article  CAS  Google Scholar 

  10. Thilagam, H. et al. 17beta estradiol induced ROS generation, DNA damage and enzymatic responses in the hepatic tissue of Japanese sea bass. Ecotoxicology 19:1258–1267 (2010).

    Article  PubMed  CAS  Google Scholar 

  11. Miro, A. M. et al. 17beta-Estradiol regulates oxidative stress in prostate cancer cell lines according to ERalpha /ERbeta ratio. J Steroid Biochem Mol Biol 123:133–139 (2011).

    Article  PubMed  CAS  Google Scholar 

  12. MohanKumar, S. M. et al. Chronic estradiol exposure induces oxidative stress in the hypothalamus to decrease hypothalamic dopamine and cause hyperprolactinemia. Am J Physiol Regul Integr Comp Physiol 300:693–699 (2011).

    Article  Google Scholar 

  13. Wang, J., Shi, X., Du, Y. & Zhou, B. Effects of xenoestrogens on the expression of vitellogenin (vtg) and cytochrome P450 aromatase (cyp19a and b) genes in zebrafish (Danio rerio) larvae. J Environ Sci Health A Tox Hazard Subst Environ Eng 46:960–967 (2011).

    PubMed  CAS  Google Scholar 

  14. Ruggeri, B. et al. Variation of the genetic expression pattern after exposure to estradiol-17beta and 4-nonylphenol in male zebrafish (Danio rerio). Gen Comp Endocrinol 158:138–144 (2008).

    Article  PubMed  CAS  Google Scholar 

  15. Kobayashi, M. et al. The antioxidant defense system Keap1-Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds. Mol Cell Biol 29:493–502 (2009).

    Article  PubMed  CAS  Google Scholar 

  16. Lee, K. W. et al. Estrogenic response in male bullfrog (Rana catesbeiana) hepatocytes after single or combined exposure to cadmium (Cd) and 17beta-estradiol (E2). Bull Environ Contam Toxicol 85:452–456 (2010).

    Article  PubMed  CAS  Google Scholar 

  17. Hasselberg, L., Meier, S. & Svardal, A. Effects of alkylphenols on redox status in first spawning Atlantic cod (Gadus morhua). Aquat Toxicol 69:95–105 (2004).

    Article  PubMed  CAS  Google Scholar 

  18. Rhee, J. S. et al. Differential expression of metallothionein (MT) gene by trace metals and endocrine-disrupting chemicals in the hermaphroditic mangrove killifish, Kryptolebias marmoratus. Ecotoxicol Environ Saf 72:206–212 (2009).

    Article  PubMed  CAS  Google Scholar 

  19. An, L. et al. Biomarker responses and genotoxicity in the mud snail (Bullacta exarata) as indicators of coastal contamination. Mar Pollut Bull 64:303–309 (2012).

    Article  PubMed  CAS  Google Scholar 

  20. Turchi, A., Tamantini, I., Camussi, A. M. & Racchi, M. L. Expression of a metallothionein A1 gene of Pisum sativum in white poplar enhances tolerance and accumulation of zinc and copper. Plant Sci 183:50–56 (2011).

    Article  PubMed  Google Scholar 

  21. Beggel, S., Connon, R., Werner, I. & Geist, J. Changes in gene transcription and whole organism responses in larval fathead minnow (Pimephales promelas) following short-term exposure to the synthetic pyrethroid bifenthrin. Aquat Toxicol 105:180–188 (2011).

    Article  PubMed  CAS  Google Scholar 

  22. Ogawa, D. et al. High glucose increases metallothionein expression in renal proximal tubular epithelial cells. Exp Diabetes Res 2011:534872 (2011).

    Article  PubMed  Google Scholar 

  23. Rehfuss, A. et al. Cyclical estrogen and free radical damage to the rabbit urinary bladder. Int Urogynecol J 21:489–494 (2010).

    Article  PubMed  Google Scholar 

  24. Fussell, K. C. et al. Catechol metabolites of endogenous estrogens induce redox cycling and generate reactive oxygen species in breast epithelial cells. Carcinogenesis 32:1285–1293 (2011).

    Article  PubMed  CAS  Google Scholar 

  25. Ohkawa, H., Ohishi, N. & Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358 (1979).

    Article  PubMed  CAS  Google Scholar 

  26. Wong, K. L. et al. Antioxidant activity of Ganoderma lucidum in acute ethanol-induced heart toxicity. Phytother Res 18:1024–1026 (2004).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seungshic Yum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woo, S., Won, H., Lee, A. et al. Oxidative stress and gene expression in diverse tissues of Oryzias javanicus exposed to 17β-estradiol. Mol. Cell. Toxicol. 8, 263–269 (2012). https://doi.org/10.1007/s13273-012-0032-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-012-0032-6

Keywords

Navigation