Skip to main content
Log in

Abnormal effects of unpurified and purified multi-walled carbon nanotubes in A549, Jurkat and THP-1 cell lines

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Multi-walled carbon nanotubes are widely used nanomaterials. Toxic effects of MWCNTs were revealed by various studies, thus prompting concerns about the effects of MWCNTs on human health and the environment. MWCNTs can be aerosolized in ambient air, and absorbed into the body through the respiratory tract. Inhaled MWCNTs can induce harmful effects on the respiratory tract and on the circulatory system. Important factors related to the toxicity of MWCNTs, such as the surface area of the nanotubes and the amount of catalytic metal included, have been revealed by various studies. These factors have an interdependent effect on MWCNT toxicity, which may differ according to the type of MWCNT. In this study, we compared the effects of purified and unpurified MWCNTs on A549, Jurkat, and THP-1 cell lines, and found that the unpurified and purified MWCNTs cause a reduction of cell viability as well as abnormal variations of cellular progression. In particular, in the case of 24 hr exposure samples, S-phase delayed pattern was appeared and the cyclin D1 was highly expressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Service, R. F. Nanotoxicology. Nanotechnology grows up. Science 304:1732–1734 (2004).

    Article  PubMed  CAS  Google Scholar 

  2. McNeil, S. E. Nanotechnology for the biologist. J Leukoc Biol 78:585–594 (2005).

    Article  PubMed  CAS  Google Scholar 

  3. Borm, P. J. et al. The potential risks of nanomaterials: A review carried out for ecetoc. Part Fibre Toxicol 3:11 (2006).

    Article  PubMed  Google Scholar 

  4. Kipen, H. M. & Laskin, D. L. Smaller is not always better: Nanotechnology yields nanotoxicology. Am J Physiol Lung Cell Mol Physiol 289:L696–697 (2005).

    Article  PubMed  CAS  Google Scholar 

  5. Nel, A., Xia, T., Madler, L. & Li, N. Toxic potential of materials at the nanolevel. Science 311:622–627 (2006).

    Article  PubMed  CAS  Google Scholar 

  6. Donaldson, K. et al. The pulmonary toxicology of ultrafine particles. J Aerosol Med 15:213–220 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. Oberdorster, G. Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health 74:1–8 (2001).

    Article  PubMed  CAS  Google Scholar 

  8. Oberdorster, G. et al. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16:437–445 (2004).

    Article  PubMed  CAS  Google Scholar 

  9. Sun, Y. P., Fu, K., Lin, Y. & Huang, W. Functionalized carbon nanotubes: Properties and applications. Acc Chem Res 35:1096–1104 (2002).

    Article  PubMed  CAS  Google Scholar 

  10. Holman, M. W. et al. The nanotech reporttm: Investment overwiew and market research for nanotechnology. Lux Research, New York 4th ed. (2006).

    Google Scholar 

  11. Salvador-Morales, C. et al. Complement activation and protein adsorption by carbon nanotubes. Mol Immunol 43:193–201 (2006).

    Article  PubMed  CAS  Google Scholar 

  12. Lam, C. W. et al. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol 36:189–217 (2006).

    Article  PubMed  CAS  Google Scholar 

  13. Maynard, A. D. et al. Exposure to carbon nanotube material: Aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxicol Environ Health A 67:87–107 (2004).

    Article  PubMed  CAS  Google Scholar 

  14. Murr, L. E. et al. Carbon nanotubes, nanocrystal forms, and complex nanoparticle aggregates in common fuel-gas combustion sources and the ambient air. J Nanopart Res 6:241–251 (2004).

    Article  CAS  Google Scholar 

  15. Muller, J. et al. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207:221–231 (2005).

    Article  PubMed  CAS  Google Scholar 

  16. Donaldson, K. et al. Carbon nanotubes: A review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92:5–22 (2006).

    Article  PubMed  CAS  Google Scholar 

  17. Nemmar, A. et al. Passage of inhaled particles into the blood circulation in humans. Circulation 105:411–414 (2002).

    Article  PubMed  CAS  Google Scholar 

  18. Nemmar, A. et al. Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. Am J Respir Crit Care Med 164:1665–1668 (2001).

    PubMed  CAS  Google Scholar 

  19. Donaldson, K. et al. Nanotoxicology. Occup Environ Med 61:727–728 (2004).

    Article  PubMed  CAS  Google Scholar 

  20. Jia, G. et al. Cytotoxicity of carbon nanomaterials: Singlewall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378–1383 (2005).

    Article  PubMed  CAS  Google Scholar 

  21. Magrez, A. et al. Cellular toxicity of carbon-based nanomaterials. Nano Lett 6:1121–1125 (2006).

    Article  PubMed  CAS  Google Scholar 

  22. Ye, S. F., Wu, Y. H., Hou, Z. Q. & Zhang, Q. Q. Ros and nf-kappab are involved in upregulation of il-8 in a549 cells exposed to multi-walled carbon nanotubes. Biochem Biophys Res Commun 379:643–648 (2009).

    Article  PubMed  CAS  Google Scholar 

  23. Simon-Deckers, A. et al. In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in a549 human pneumocytes. Toxicology 253:137–146 (2008).

    Article  PubMed  CAS  Google Scholar 

  24. Pulskamp, K., Diabate, S. & Krug, H. F. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168:58–74 (2007).

    Article  PubMed  CAS  Google Scholar 

  25. Shvedova, A. A. et al. Exposure to carbon nanotube material: Assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A 66:1909–1926 (2003).

    Article  PubMed  CAS  Google Scholar 

  26. Murray, A. R. et al. Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes. Toxicology 257:161–171 (2009).

    Article  PubMed  CAS  Google Scholar 

  27. Manna, S. K. et al. Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factorkappab in human keratinocytes. Nano Lett 5:1676–1684 (2005).

    Article  PubMed  CAS  Google Scholar 

  28. Shvedova, A. A. et al. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289:L698–708 (2005).

    Article  PubMed  CAS  Google Scholar 

  29. Thannickal, V. J. & Fanburg, B. L. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279:L1005–1028 (2000).

    PubMed  CAS  Google Scholar 

  30. Boonstra, J. & Post, J. A. Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene 337:1–13 (2004).

    Article  PubMed  CAS  Google Scholar 

  31. Helland, A. et al. Reviewing the environmental and human health knowledge base of carbon nanotubes. Cien Saude Colet 13:441–452 (2008).

    Article  PubMed  Google Scholar 

  32. Sarkar, S. et al. Analysis of stress responsive genes induced by single-walled carbon nanotubes in bj foreskin cells. J Nanosci Nanotechnol 7:584–592 (2007).

    PubMed  CAS  Google Scholar 

  33. Cui, D. et al. Effect of single wall carbon nanotubes on human hek293 cells. Toxicol Lett 155:73–85 (2005).

    Article  PubMed  CAS  Google Scholar 

  34. Tran, K. Y. et al. Carbon nanotubes synthesis by the ethylene chemical catalytic vapour deposition (ccvd) process on fe, co, and fe-co/al2o3 sol-gel catalysts. Applied Catalysis A, General 318:63–69 (2007).

    Article  CAS  Google Scholar 

  35. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative pcr and the 2 (-delta delta c (t)) method. Methods 25:402–408 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanggyu Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y.H., Park, H.W., Ryoo, Z.Y. et al. Abnormal effects of unpurified and purified multi-walled carbon nanotubes in A549, Jurkat and THP-1 cell lines. Mol. Cell. Toxicol. 8, 103–112 (2012). https://doi.org/10.1007/s13273-012-0013-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-012-0013-9

Keywords

Navigation