Skip to main content
Log in

Identification of atrophy-related proteins produced in response to cast immobilization in rat gastrocnemius muscle

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Prolonged disuse of skeletal muscle causes atrophy, which is a universal phenomenon induced by various factors such as cast immobilization and space flight. However, the identity of proteins produced in atrophying skeletal muscle cells is poorly understood, especially during a period of cast immobilization. In the present study, we used 2-dimensional gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry to investigate protein expression in rat gastrocnemius subjected to cast immobilization for 7 and 21 days. Gastrocnemius muscle mass was lost continuously throughout the 21 days of cast immobilization. Proteomic analysis of silver-stained gels of whole-protein extracts from rat gastrocnemius muscle strips detected 48 proteins. Of these proteins, the expression of 6 proteins changed during cast immobilization; these proteins are involved in metabolic, contraction, and chaperone activities. These results suggest that cast immobilization-induced skeletal muscle atrophy is related to changes in the defense and contractile apparatus proteins in rat gastrocnemius muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, J. et al. p38 MAPK participates in muscle-specific RING finger 1-mediated atrophy in cast-immobilized rat gastrocnemius muscle. Kor J Phyiol & Pharmacol 13:491–496 (2009).

    Article  CAS  Google Scholar 

  2. Kim, J. & Kim, B. Differential regulation of MAPK isoforms during cast immobilization induced atrophy in rat gastrocnemius muscle. J Phys Ther Sci 22: in press (2010).

  3. Stevens, J. E. et al. Relative contributions of muscle activation and muscle size to plantarflexor torque during rehabilitation after immobilization. J Orthop Res 24:1729–1736 (2006).

    Article  PubMed  Google Scholar 

  4. McKinnell, I. W. & Rudnicki, M. A. Molecular mechanisms of muscle atrophy. Cell 119:907–910 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Kandarian, S. C. & Jackman, R. W. Intracellular signaling during skeletal muscle atrophy. Muscle Nerve 33:155–165 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Jago, R. T. & Goldberg, A. L. What do we really know about the ubiquitin-proteasome pathway in muscle atrophy. Curr Opin Clin Nutr Metab Care 4:183–190 (2001).

    Article  Google Scholar 

  7. Booth, F. W. Time course of muscular atrophy during immobilization of hindlimbs in rats. J Appl Physiol 43:656–661 (1977).

    CAS  PubMed  Google Scholar 

  8. Booth, F. W. & Thomason, D. B. Molecular and cellular adaptation of muscle in response to exercise: perspectives of various models. Physiol Rev 71:541–585 (1991).

    CAS  PubMed  Google Scholar 

  9. Appell, H. J. Morphology of immobilized skeletal muscle and the effects of a pre- and postimmobilization training program. Int J Sports Med 7:6–12 (1986).

    Article  CAS  PubMed  Google Scholar 

  10. Costelli, P. et al. Ca2+-dependent proteolysis in muscle wasting. Int J Biochem Cell Biol 37:2134–2146 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Higashibata, A. et al. Decreased expression of myogenic transcription factors and myosin heavy chains in Caenorhabditis elegans muscles developed during spaceflight. J Exp Biol 209:3209–3218 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Yu, Z. B., Gao, F., Feng, H. Z. & Jin, J. P. Differential regulation of myofilament protein isoforms underlying the contractility changes in skeletal muscle unloading. Am J Physiol Cell Physiol 292:C1192–C1203 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Isfort, R. J. et al. Proteomic analysis of the atrophying rat soleus muscle following denervation. Electrophoresis 21:2228–2234 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Isfort, R. J. et al. Proteomic analysis of rat soleus muscle undergoing hindlimb suspension-induced atrophy and reweighting hypertrophy. Proteomics 2:543–550 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Li, Z. B., Lehar, M., Samlan, R. & Flint, P. W. Proteomic analysis of rat laryngeal muscle following denervation. Proteomics 5:4764–4776 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Glass, D. J. Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 37:1974–1984 (2005).

    CAS  PubMed  Google Scholar 

  17. Baldwin, K. M. & Haddad, F. Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms. Am J Phys Med Rehabil 81: S40–S51 (2002).

    Article  PubMed  Google Scholar 

  18. Samarel, A. M. et al. Protein synthesis and degradation during starvation-induced cardiac atrophy in rabbits. Cir Res 60:933–941 (1987).

    CAS  Google Scholar 

  19. Cohen, S. et al. During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation. J Cell Biol 185:1083–1095 (2009)

    Article  CAS  PubMed  Google Scholar 

  20. Piec, I. et al. Differential proteome analysis of aging in rat skeletal muscle. FASEB J 19:1143–1155 (2006).

    Google Scholar 

  21. Lombardi, A. et al. Defining the transcriptomic and proteomic profiles of rat ageing skeletal muscle by the use of a cDNA array, 2D- and Blue native-PAGE approach. J Proteomics 72:708–721 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Ge, Y., Molloy, M. P., Chamberlain, J. S. & Andrews, P. C. Proteomic analysis of mdx skeletal muscle: Great reduction of adenylate kinase 1 expression and enzymatic activity. Proteomics 3:1895–1903 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Højlund, K. et al. Proteome analysis reveals phosphorylation of ATP synthase beta -subunit in human skeletal muscle and proteins with potential roles in type 2 diabetes. J Biol Chem 278:10436–10442 (2003).

    Article  PubMed  Google Scholar 

  24. Poetter, K. et al. Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. Nat Genet 13:63–69 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Rottbauer, W. et al. Cardiac myosin light chain-2: a novel essential component of thick-myofilament assembly and contractility of the heart. Circ Res 99:323–331 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Gannon, J., Doran, P., Kirwan, A. & Ohlendieck, K. Drastic increase of myosin light chain MLC-2 in senescent skeletal muscle indicates fast-to-slow fibre transition in sarcopenia of old age. Eur J Cell Biol 88:685–700 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Doran, P., Donoghue, P., O’Connell, K., Gannon, J. & Ohlendieck, K. Proteomics of skeletal muscle aging. Proteomics 9:989–1003 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Gannon, J., Doran, P., Kirwan, A. & Ohlendieck, K. Drastic increase of myosin light chain MLC-2 in senescent skeletal muscle indicates fast-to-slow fiber transition in sarcopenia of old age. Eur J Cell Biol 88:685–700 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Seo, Y., Lee, K., Park, K., Bae, K. & Choi, I. A proteomic assessment of muscle contractile alterations during unloading and reloading. J Biochem 139:71–80 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Raffaello, A. et al. Denervation in murine fast-twitch muscle: short-term physiological changes and temporal expression profiling. Physiol Genomics 25:60–74 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Miyoshi, K. et al. Radioimmunoassay for human myoglobin: methods and results in patients with skeletal muscle or myocardial disorders. J Lab Clin Med 92: 341–352 (1978).

    CAS  PubMed  Google Scholar 

  32. Kunishige, M. et al. Overexpressions of myoglobin and antioxidant enzymes in ragged-red fibers of skeletal muscle from patients with mitochondrial encephalomyopathy. Muscle Nerve 28:484–492 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Powers, S. K., Kavazis, A. N. & McClung, J. M. Oxidative stress and disuse muscle atrophy. J Appl Physiol 102:2389–2397 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Sharp, P. S., Dick, J. R. & Greensmith, L. The effect of peripheral nerve injury on disease progression in the SOD1 (G93A) mouse model of amyotrophic lateral sclerosis. Neuroscience 130:897–910 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Arbogast, S. et al. Oxidative stress in SEPN1-related myopathy: from pathophysiology to treatment. Ann Neurol 65:677–686 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Van Nieuwenhoven, F. A. et al. Discrimination between myocardial and skeletal muscle injury by assessment of the plasma ratio of myoglobin over fatty acidbinding protein. Circulation 92:2848–2854 (1995).

    PubMed  Google Scholar 

  37. DeRuisseau, K. C. et al. Diaphragm unloading via controlled mechanical ventilation alters the gene expression profile. Am J Respir Crit Care Med 172: 1267–1275 (2005).

    Article  PubMed  Google Scholar 

  38. Reppe, S. et al. Abnormal muscle and hematopoietic gene expression may be important for clinical morbidity in primary hyperparathyroidism. Am J Physiol Endocrinol Metab 292:E1465–E1473 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Lee, C. K. et al. Diminished expression of dihydropteridine reductase is a potent biomarker for hypertensive vessels. Proteomics 9:4851–4858 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Vasconsuelo, A., Milanesi, L. & Boland, R. Participation of HSP27 in the antiapoptotic action of 17β-estradiol in skeletal muscle cells. Cell Stress Chaperones 15:183–192 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Choi, O. B. et al. Olibanum extract inhibits vascular smooth muscle cell migration and proliferation in response to platelet-derived growth factor. Kor J Phyiol & Pharmacol 13:107–113 (2009).

    Article  Google Scholar 

  42. Charette, S. J., Lavoie, J. N., Lambert, H. & Landry, J. Inhibition of Daxx-mediated apoptosis by heat shock protein 27. Mol Cell Biol 20:7602–7612 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Dalle-Donne, I., Rossi, R., Milzani, A., Di Simplicio, P. & Colombo, R. The actin cytoskeleton response to oxidants: from small heat shock protein phosphorylation to changes in the redox state of actin itself. Free Radic Biol Med 31:1624–1632 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Won, K. J. et al. Cordycepin attenuates neointimal formation by inhibiting reactive oxygen species-mediated responses in vascular smooth muscle cells in rats. J Pharmacol Sci 109:403–412 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Booth, F. W. & Kelso, J. R. Production of rat muscle atrophy by cast fixation. Appl Physiol 34:404–406 (1973).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junghwan Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Kim, B. Identification of atrophy-related proteins produced in response to cast immobilization in rat gastrocnemius muscle. Mol. Cell. Toxicol. 6, 359–369 (2010). https://doi.org/10.1007/s13273-010-0048-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-010-0048-8

Keywords

Navigation