Skip to main content
Log in

Participation of HSP27 in the antiapoptotic action of 17β-estradiol in skeletal muscle cells

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Exposure to 17β-estradiol prior to induction of apoptosis protects skeletal muscle cells against damage. The mechanism involved in this protective action of the hormone is poorly understood. In the present study, using the murine muscle cell line C2C12, evidence was obtained that inhibition of H2O2-induced apoptosis by the estrogen requires the participation of heat shock protein 27 (HSP27). Reverse transcriptase polymerase chain reaction, Western blot, and immunocytochemistry assays showed that 17β-estradiol induces a time-dependent (5–60 min) increase in the expression of HSP27. In addition, in presence of quercetin, an inhibitor of HSPs, the antiapoptotic effect of the hormone was diminished. More specifically, blockage experiments with short interference RNA targeting HSP27 confirmed the role of this chaperone in the protective effect of the steroid. 17β-Estradiol abolished caspase-3 cleavage elicited by H2O2. Coimmunoprecipitation assays suggested physical interaction of HSP27 with caspase-3 in presence of estradiol. Furthermore, we observed that this chaperone interacts with estrogen receptors (ER) β in mitochondria. Then, this study suggests that HSP27 plays a new role in the antiapoptotic action triggered by 17β-estradiol by modulating caspase-3 activity and stabilizing ERβ in skeletal muscle cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arrigo AP (1998) Small stress proteins: chaperones that act as regulators of intracellular redox state and programmed cell death. Biol Chem 379:19–26

    CAS  PubMed  Google Scholar 

  • Arrigo AP, Landry J (1994) Expression and function of the low-molecular-weight heat shock proteins. In: Morimoto RI, Tissieres A, Georgopoulos C (eds) The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, New York, pp 335–373

    Google Scholar 

  • Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308

    Article  CAS  PubMed  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 172:248–254

    Article  Google Scholar 

  • Bruey JM, Ducasse C, Bonniaud P et al (2000) Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2:645–652

    Article  CAS  PubMed  Google Scholar 

  • Choi KC, Kang SK, Tai CJ, Auersperg N, Leung PC (2001) Estradiol up-regulates antiapoptotic Bcl-2 messenger ribonucleic acid and protein in tumorigenic ovarian surface epithelium cells. Endocrinology 142:2351–2360

    Article  CAS  PubMed  Google Scholar 

  • Ciocca DR, Oesterreich S, Chammess GC, McGuire WL, Fuqua SAW (1993) Biological and clinical implications of heat shock protein 27000 (Hsp27): a review. J Natl Cancer Inst 85:1558–1569

    Article  CAS  PubMed  Google Scholar 

  • Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326:1–16

    CAS  PubMed  Google Scholar 

  • Concannon CG, Gorman AM, Samali A (2003) On the role of Hsp27 in regulating apoptosis. Apoptosis 8:61–70

    Article  CAS  PubMed  Google Scholar 

  • Cooper LF, Tiffee JC, Griffin JP, Hamano H, Guo Z (2000) Estrogen-induced resistance to osteoblast apoptosis is associated with increased HSP27 expression. J Cell Physiol 185:401–407

    Article  CAS  PubMed  Google Scholar 

  • Di Giovanni S, Mirabella M, D'Amico A, Tonali P, Servidei S (2000) Apoptotic features accompany acute quadriplegic myopathy. Neurology 55:854–858

    PubMed  Google Scholar 

  • Dionne IJ, Kinaman KA, Poehlman ET (2000) Sarcopenia and muscle function during menopause and horrmone-replacement therapy. J Nutr Health Aging 4:156–161

    CAS  PubMed  Google Scholar 

  • Florian M, Magder S (2008) Estrogen decreases TNF-alpha and oxidized LDL induced apoptosis in endothelial cells. Steroids 73:47–58

    Article  CAS  PubMed  Google Scholar 

  • Hansen RK, Parra I, Lemiux P, Oesterreich S, Hilsenbeck SG, Fuqua SAW (1999) Hsp27 overexpression inhibits doxorubicin-induced apoptosis in human breast cancer cells. Breast Cancer Res Treat 56:187–196

    Article  CAS  PubMed  Google Scholar 

  • Hartl F (1996) Molecular chaperones in cellular protein folding. Nature 381:571–579

    Article  CAS  PubMed  Google Scholar 

  • Havasi A, Li Z, Wang Z, Martin JL, Botla V, Ruchalski K, Schwartz JH, Borkan SC (2008) Hsp27 inhibits Bax activation and apoptosis via a phosphatidylinositol 3-kinase-dependent mechanism. J Biol Chem 283:12305–12313

    Article  CAS  PubMed  Google Scholar 

  • Hayees K, Benndorf R (1997) Effect of protein kinase inhibitors on activity of mammalian small heat shock protein (Hsp25) kinase. Biochem Pharmacol 53:1239–1247

    Article  Google Scholar 

  • Jakubowicz-Gil J, Rzymowska J, Gawron A (2002) Quercetin, apoptosis, heat shock. Biochem Pharmacol 64:1591–1595

    Article  CAS  PubMed  Google Scholar 

  • Jia J, Guan D, Zhu W, Alkayed NJ, Wang MM, Hua Z, Xu Y (2008) Estrogen inhibits Fas-mediated apoptosis in experimental stroke. Exp Neurol 215:48–52

    Article  PubMed  Google Scholar 

  • Jiang X, Wang X (2000) Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to Apaf-1. J Biol Chem 275:31199–31203

    Article  CAS  PubMed  Google Scholar 

  • Kahlert S, Grohe C, Karas RH, Lobbert K, Neyses L, Vetter H (1997) Effects of estrogen on skeletal myoblast growth. Biochem Biophys Res Commun 232:373–378

    Article  CAS  PubMed  Google Scholar 

  • Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH, Peter ME (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 14:5579–5588

    CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lemoine S, Granier P, Tiffoche C, Rannou-Bekono F, Thieulant ML, Delamarche P (2003) Estrogen receptor alpha mRNA in human skeletal muscles. Med Sci Sports Exerc 35:439–443

    Article  CAS  PubMed  Google Scholar 

  • Mehlen P, Schulze-Osthoff K, Arrigo AP (1996) Small stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1- and staurosporine-induced cell death. J Biol Chem 271:16510–16514

    Article  CAS  PubMed  Google Scholar 

  • Mendelsohn ME, Zhu Y, O’Neill S (1991) The 29-kDa proteins phosphorylated in thrombin-activated human platelets are forms of the estrogen receptor-related 27-kDa heat shock protein. PNAS 88:11212–11216

    Article  CAS  PubMed  Google Scholar 

  • Milanesi L, De Boland AR, Boland R (2008) Expression and localization of estrogen receptor α in the C2C12 murine skeletal muscle cell line. J Cell Biochem 104:1254–1273

    Article  CAS  PubMed  Google Scholar 

  • Milanesi L, Vasconsuelo A, R. de Boland A, Boland R (2009) Expression and subcellular distribution of native receptor beta in murine C2C12 cells and skeletal muscle tissue. Steroids 74:489–497

    Article  CAS  PubMed  Google Scholar 

  • Miller H, Poon S, Hibbert B, Rayner K, Chen YX, O'Brien ER (2005) Modulation of estrogen signaling by the novel interaction of HSP27, a biomarker for atherosclerosis, and estrogen receptor β. Vasc Biol 25:10–14

    Google Scholar 

  • Muchowski PJ, Bassuk JA, Lubsen NH, Clark JI (1997) Human alphaB-crystallin. Small heat shock protein and molecular chaperone. J Biol Chem 272:2578–2582

    Article  CAS  PubMed  Google Scholar 

  • Okasha SA, Ryu S, Do Y, McKallip RJ, Nagarkatti M, Nagarkatti PS (2001) Evidence for estradiol-induced apoptosis and dysregulated T cell maturation in the thymus. Toxicol 163:49–62

    Article  CAS  Google Scholar 

  • Pandey P, Farber R, Nakazawa A (2000) Hsp27 functions as a negative regulator of cytochrome c-dependent activation of procaspase-3. Oncogene 19:1975–1981

    Article  CAS  PubMed  Google Scholar 

  • Persky AM, Green PS, Stubley L, Howell CO, Zaulyanov L, Brazeau GA, Simpkins JW (2000) Protective effect of estrogens against oxidative damage to heart and skeletal muscle in vivo and in vitro. Proc Soc Exp Biol Med 223:59–66

    Article  CAS  PubMed  Google Scholar 

  • Saleh A, Srinivasula SM, Balkir L, Robbins PD, Alnemri ES (2000) Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol 2:476–483

    Article  CAS  PubMed  Google Scholar 

  • Samali A, Cotter TG (1996) Heat shock proteins increase resistance to apoptosis. Exp Cell Res 223:163–170

    Article  CAS  PubMed  Google Scholar 

  • Seli E, Guzeloglu-Kayisli O, Kayisli UA, Kizilay G, Arici A (2007) Estrogen increases apoptosis in the arterial wall in a murine atherosclerosis model. Fertil Steril 88:1190–1196

    Article  PubMed  Google Scholar 

  • Snedecor GW, Cochran WG (1967) Statistical methods. The Iowa State University Press, Ames

    Google Scholar 

  • Steller H (1995) Mechanisms and genes of cellular suicide. Science 267:1445–1449

    Article  CAS  PubMed  Google Scholar 

  • Tews DS (2002) Apoptosis and muscle fibre loss in neuromuscular disorders. Neuromuscul Disord 12:613–622

    Article  CAS  PubMed  Google Scholar 

  • Vasconsuelo A, Milanesi LM, Boland RL (2008) 17β-Estradiol abrogates apoptosis in murine skeletal muscle cells through estrogen receptors: role of the phosphatidylinositol 3-kinase/Akt pathway. J Endocrinol 196:385–397

    Article  CAS  PubMed  Google Scholar 

  • Wei YQ, Zhao X, Kariya Y, Fukata H, Teshigawara K, Uchida A (1994) Induction of apoptosis by quercetin: involvement of heat shock. Cancer Res 54:4952–4957

    CAS  PubMed  Google Scholar 

  • Welch WJ (1992) Mammalian stress response: cell physiology, structure/function of stress proteins, and implications for medicine and disease. Physiol Rev 72:1063–1081

    CAS  PubMed  Google Scholar 

  • Wiik B, Glenmark M, Ekman M, Esbjornsson-Liljedahl O, Johansson K, Bodin E, Enmark E, Jansson (2003) Oestrogen receptor beta is expressed in adult human skeletal muscle both at the mRNA and protein level. Acta Physiol Scand 179:381–387

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Agencia Nacional de Promoción Científica y Tecnológica and the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Vasconsuelo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasconsuelo, A., Milanesi, L. & Boland, R. Participation of HSP27 in the antiapoptotic action of 17β-estradiol in skeletal muscle cells. Cell Stress and Chaperones 15, 183–192 (2010). https://doi.org/10.1007/s12192-009-0132-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-009-0132-y

Keywords

Navigation