Skip to main content
Log in

Multidisciplinary design and aerodynamic assessment of an agile and highly swept aircraft configuration

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

The characteristics of highly swept aircraft configurations have been studied in a series of consecutive research projects in DLR for more than 15 years. Currently, the investigations focus on the generic SACCON UCAV configuration, which was specified in a common effort together with the NATO STO/AVT-161 task group. This paper is the first one in a series of articles presenting the SACCON-related research work within DLR. First, the article describes the conceptual design studies being performed for this aircraft configuration. At this point the question is raised, whether the simple aerodynamic methods used within conceptual design can be applied to such type of aircraft configurations with sufficient accuracy. Thus, the second part of this article provides a comparison of the aerodynamic characteristics of the SACCON configuration predicted by low- and high-fidelity aerodynamic methods, as well as some results from wind tunnel experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. Deutsches Zentrum für Luft- und Raumfahrt e.V.

  2. Unmanned Combat Air Vehicle.

  3. Angle of Attack.

  4. Deutsche Gesellschaft für Luft- und Raumfahrt – Lilienthal-Oberth e.V.

  5. Common Parametric Aircraft Configuration Schema.

  6. TiXI XML Interface.

  7. TiGL Geometry Library.

  8. Computer Aided Design.

  9. Remote Component Environment.

  10. Computational Fluid Dynamics.

  11. Stability And Control CONfiguration.

  12. North Atlantic Treaty Organization, Science and Technology Organization, Applied Vehicle Technology.

  13. Reynolds-averaged Navier–Stokes equations.

  14. Spalart–Allmaras.

  15. The Tau RANS result for M = 0.85, α = 14° is missing because a converged solution could not be found for that case.

Abbreviations

C A :

Axial force coefficient [–]

C D :

Drag force coefficient [–]

C L :

Lift force coefficient [–]

C N :

Normal force coefficient [–]

C S :

Body-fixed side force coefficient [–]

C Y :

Side force coefficient [–]

C l :

Rolling moment coefficient [–]

C m :

Pitching moment coefficient [–]

C mx :

Body-fixed X-moment coefficient [–]

C my :

Body-fixed Y-moment coefficient [–]

C mz :

Body-fixed Z-moment coefficient [–]

C n :

Yawing moment coefficient [–]

I xx :

Mass moment of inertia (X-axis) [kg m2]

I yy :

Mass moment of inertia (Y-axis) [kg m2]

I zz :

Mass moment of inertia (Z-axis) [kg m2]

V :

Freestream velocity [m/s]

p, q, r :

Rotation rates (X, Y, Z-axis) [°/s]

X, Y, Z :

Coordinate system

α :

Angle of attack [°]

β :

Angle of sideslip [°]

References

  1. Louis, J., Marchetto, A., Maretsis, M., Mijares, F.: nEUROn: An International Cooperation to Enhance Innovation. ICAS General Lecture, ICAS Congress, St. Petersburg (2014)

    Google Scholar 

  2. Jenkins, D.R., Landis, T., Miller, J.: AMERICAN X-VEHICLES—centennial of flight edition: an inventory 2014 X-1 to X-50. Monogr. Aerosp. Hist. 31, SP-2003-4531 (2013)

  3. Hövelmann, A., Breitsamter, C.: Aerodynamic Characteristics of the SAGITTA Diamond Wing Demonstrator Configuration. DGLR, Deutscher Luft- und Raumfahrtkongress 2012, Berlin (2013). urn:nbn:de:101:1-2013020112060

  4. Woolvin, S.: Conceptual design studies of the 1303 configuration. AIAA 2006-2991, 24th AIAA Applied Aerodynamics Conference, San Francisco, CA, 2006. doi:10.2514/6.2006-2991

  5. Rauen, A.: Eurofighter Typhoon. ICAS General Lecture, ICAS Congress, Anchorage (2008)

    Google Scholar 

  6. Huber, K., Rein, M., Schütte, A., Löser, T.: Experimental Aerodynamic Assessment and Evaluation of an Agile Highly Swept Aircraft Configuration. DGLR, Deutscher Luft- und Raumfahrtkongress, Rostock (2015)

    Google Scholar 

  7. Schütte, A., Huber, K., Zimper, D.: Numerische aerodynamische Analyse und Bewertung einer agilen und hoch gepfeilten Flugzeugkonfiguration. DGLR, Deutscher Luft- und Raumfahrtkongress, Rostock (2015)

    Google Scholar 

  8. Paul, M., Rütten, M., Rein, M.: Numerische Untersuchungen von nicht konventionellen Steuerkonzepten für eine agile und hoch gepfeilte Flugzeugkonfiguration. DGLR, Deutscher Luft- und Raumfahrtkongress, Rostock (2015)

    Google Scholar 

  9. Nauroz, M.: Antriebskonzept einer agilen und hoch gepfeilten Flugzeugkonfiguration. DGLR, Deutscher Luft- und Raumfahrtkongress, Rostock (2015)

    Google Scholar 

  10. Koch, S., Rütten, M., Rein, M.: Experimentelle und numerische Untersuchungen zu integrierten Einläufen für agile und hoch gepfeilte Flugzeugkonfigurationen. DGLR, Deutscher Luft- und Raumfahrtkongress, Rostock (2015)

    Google Scholar 

  11. Voß, A.: Design and Sizing of a Parametrized Structural Model for a UCAV Configuration for Loads and Aeroelastic Analysis. DGLR, Deutscher Luft- und Raumfahrtkongress, Rostock (2015)

    Google Scholar 

  12. Lindermeir, E., Rütten, M.: Infrarotsignaturbewertung von agilen und hoch gepfeilten Flugzeugkonfigurationen. DGLR, Deutscher Luft- und Raumfahrtkongress, Rostock (2015)

    Google Scholar 

  13. Kemptner, E.: Radarsignaturbewertung von agilen und hoch gepfeilten Flugzeugkonfigurationen. DGLR, Deutscher Luft- und Raumfahrtkongress, Rostock (2015)

    Google Scholar 

  14. Schwithal, J., Rohlf, D., Looye, G., Liersch, C.M.: An innovative route from wind tunnel experiments to flight dynamics analysis for highly swept flying wing. DGLR, Deutscher Luft- und Raumfahrtkongress, Rostock (2015)

    Google Scholar 

  15. Kuchar, R., Steinhauser, R., Looye, G.: Reglerentwurf für eine agile und hoch gepfeilte Flugzeugkonfiguration. DGLR, Deutscher Luft- und Raumfahrtkongress, Rostock (2015)

    Google Scholar 

  16. Vicroy, D.D., Huber, K.C., Loeser, T., Rohlf, D.: Low-speed dynamic wind tunnel test analysis of a generic 53° swept UCAV configuration with controls. 32nd AIAA Applied Aerodynamics Conference, No. AIAA-2014-2003, Atlanta, GA, June 2014

  17. Liersch, C.M, Hepperle, M.: A unified approach for multidisciplinary preliminary aircraft design. CEAS 2009 European Air and Space Conference, October 2009

  18. Liersch, C.M., Hepperle, M.: A distributed toolbox for multidisciplinary preliminary aircraft design. CEAS Aeronaut. J. 2(1–4), 57–68 (2011)

    Article  Google Scholar 

  19. Nagel, B., Zill, T., Moerland, E., Böhnke, D.: Virtual aircraft multidisciplinary analysis and design processes—lessons learned from the collaborative design project VAMP. CEAS 2013 European Air and Space Conference, September 2013

  20. Nagel, B., Böhnke, D., Gollnick, V., Schmollgruber, P., Rizzi, A., Rocca, G.L., Alonso, J.J.: Communication in aircraft design: can we establish a common language?. 28th International Congress of the Aeronautical Sciences (ICAS), 2012

  21. Bachmann, A., Kunde, M., Litz, M., Schreiber, A.: A dynamic data integration approach to build scientific work flow systems. International workshop on work flow management (IWWM 2009), The institute of electrical and electronics engineers, Inc., May 2009, pp. 27–33

  22. CPACS Homepage. http://software.dlr.de/p/cpacs/home/ [cited 31 August 2015]

  23. TiXI Homepage. http://software.dlr.de/p/tixi/home/ [cited 31 August 2015]

  24. TiGL Homepage. http://software.dlr.de/p/tigl/home/ [cited 31 August 2015]

  25. ModelCenter Homepage. http://www.phoenix-int.com/modelcenter/integrate.php [cited 31 August 2015]

  26. Seider, D., Fischer, P., Litz, M., Schreiber, A., Gerndt, A.: Open source software framework for applications in aeronautics and space. IEEE Aerospace Conference, March 2012

  27. RCE Homepage. http://software.dlr.de/p/rcenvironment/home/ [cited 31 August 2015]

  28. Cummings, R., Schütte, A.: An integrated computational/experimental approach to UCAV stability and control estimations: overview of NATO RTO AVT-161. 28th AIAA Applied Aerodynamics Conference, No. AIAA-2010-4392, 2010

  29. Becker, R.-G., Wolters, F., Nauroz, M., Otten, T.: Development of a gas turbine performance code and its application to preliminary engine design. DLRK 2011, September 2011

  30. VSAERO Homepage. http://www.ami.aero/software-computing/amis-computational-fluid-dynamics-tools/vsaero/ [cited 31 August 2015]

  31. Horstmann, K.H.: Ein Mehrfach-Traglinienverfahren und seine Verwendung für Entwurf und Nachrechnung nichtplanarer Flügelanordnungen. Tech. rep., Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt (1987)

  32. Liersch, C.M, Wunderlich, T.F.: A fast aerodynamic tool for preliminary aircraft design. 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, No. AIAA-2008-5901, September 2008

  33. Looye, G.: TECS/THCS-based generic autopilot control laws for aircraft mission simulation. Second CEAS Specialist Conference on Guidance, Navigation and Control, June 2013

  34. Krüger, W., Cumnuantip, S., Liersch, C.: Multidisciplinary conceptual design of a UCAV configuration. RTO/AVT Panel Workshop “Virtual Prototyping of Affordable Military Vehicles Using Advanced MDO”, 2011

  35. Klimmek, T.: Parameterization of topology and geometry for the multidisciplinary optimization of wing structures. CEAS 2009 European Air and Space Conference, October 2009

  36. Duus, G., Duda, H.: HAREM—handling qualities research and evaluation using matlab. IEEE International Symposium on Computer Aided Control System Design, Kohala Coast, HI (US), 22–27 August 1999, pp. 428–432

  37. Ehlers, J.: Flying qualities analysis of CPACS based aircraft models—HAREM V2.0. Tech. rep., German Aerospace Center (DLR), Institute for Flight Systems, June 2013

  38. CATIA Homepage. http://www.3ds.com/de/produkte-und-services/catia/ [cited 31 August 2015]

  39. Löser, T., Vicroy, D., Schütte, A.: SACCON static wind tunnel tests at DNW-NWB and 14’x22’ NASA LaRC. 28th AIAA Applied Aerodynamics Conference, No. AIAA-2010-4393, 2010

  40. Vicroy, D.D., Loeser, T.D., Schütte, A.: Static and forced-oscillation tests of a generic unmanned combat air vehicle. J. Aircr. 49(6), 1558–1583 (2012)

    Article  Google Scholar 

  41. Huber, K.C., Vicroy, D., Schütte, A., Hübner, A.R.: UCAV model design and static experimental investigations to estimate control device effectiveness and Stability and Control capabilities. 32nd AIAA Applied Aerodynamics Conference, No. AIAA-2014-2002, Atlanta, GA, June 2014

  42. Galle, M., Gerhold, T., Evans, J.: Technical documentation of the DLR TAU-code. Tech. Rep. DLR-IB 233-97/A43, DLR (1997)

  43. Gerhold, T., Friedrich, O., Evans, J., Galle, M.: Calculation of complex three-dimensional configurations employing the DLR-tau-Code. 35th Aerospace Sciences Meeting and Exhibit, January 6–10, 1997, Reno, NV, No. AIAA-1997-0167, January 1997

  44. Gerhold, T.: Overview of the hybrid RANS code TAU. In: Kroll, N., Faßbender, J. (eds.) Closing Presentation DLR Project MEGAFLOW, Braunschweig (de), 10.-11.12.2002, Vol. 89 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM). Springer, Berlin (2005)

  45. Schwamborn, D., Gerhold, T., Heinrich, R.: The DLR TAU-code: recent applications in research and industry. ECCOMAS CFD 2006 Conference, 2006

  46. Schütte, A., Huber, K.C., Boelens, O.J.: Static and dynamic numerical simulations of a generic UCAV configuration with and without control devices. 32nd AIAA Applied Aerodynamics Conference, No. AIAA-2014-2132, Atlanta, GA, June 2014

  47. Zimper, D., Hummel, D.: Analysis of the transonic flow around a generic UCAV configuration. 32nd AIAA Applied Aerodynamics Conference, No. AIAA-Paper 2014-2266, Atlanta, GA, June 2014

  48. Liersch, C.M., Huber, K.C.: Conceptual design and aerodynamic analyses of a generic UCAV configuration. 32nd AIAA Applied Aerodynamics Conference, No. AIAA-Paper 2014-2001, Atlanta, GA, June 2014

Download references

Acknowledgments

The design work presented here was performed in close cooperation with DLR-colleagues from all involved disciplines, namely aeroelastics, flight mechanics and systems, infrared-signatures, propulsion, radar signatures, structures, system dynamics and control. The authors would like to thank all colleagues who contributed to this design work. An additional acknowledgement has to be given to the community of the DLR conceptual design system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Liersch.

Additional information

This paper is based on a presentation at the German Aerospace Congress, September 22–24, 2015, Rostock, Germany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liersch, C.M., Huber, K.C., Schütte, A. et al. Multidisciplinary design and aerodynamic assessment of an agile and highly swept aircraft configuration. CEAS Aeronaut J 7, 677–694 (2016). https://doi.org/10.1007/s13272-016-0213-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-016-0213-4

Keywords

Navigation