Skip to main content
Log in

Prediction and uncertainty propagation of correlated time-varying quantities using surrogate models

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

The identification of correlated quantities is of particular interest in several fields of engineering and physics, for example in the development of reliable structural designs. When ‘time-varying’ quantities are analysed, pairs of correlated interesting quantities (IQs), e.g. bending moments, torques, etc., can be displayed by plotting them against each other, and the critical conditions determined by the extreme values of the envelope (convex hull). In this paper, a reduced order singular value-based modelling technique is developed that enables a fast computation of the correlated loads envelope for systems where the effect of variation of design parameters needs to be considered. The approach is extended to efficiently quantify the effects of uncertainty in the system parameters. The effectiveness of the method is demonstrated by consideration of the gust loads occurring from the aeroelastic numerical model of a civil jet airliner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. In this work, the Convex Hull envelope was determined using the MATLAB® function ‘convhull’.

References

  1. Wright, J.R., Cooper, J.E.: Introduction to Aircraft Aeroelasticity and Loads. Wiley, London (2007)

    Book  Google Scholar 

  2. Khodaparast, H.H., Georgiou, G., Cooper, J.E., Travaglini, L., Ricci, S., Vio, G.A., Denner, P.: Rapid prediction of worst case gust loads. J. Aeroelast. Struct. Dyn. 2(3), 33–54 (2012)

    Google Scholar 

  3. Khodaparast, H.H., Georgiou, G., Cooper, J.E., Travaglini, L., Ricci, S., Denner, P., Vio, G.A.: Efficient worst case ‘1—cosine’ gust loads prediction, IFASD. Paris, France (2011)

  4. Khodaparast, H.H., Cooper, J.E.: Rapid prediction of worst case gust loads following structural modification. AIAA Journal 52(2), 242–254 (2014)

    Article  Google Scholar 

  5. Khodaparast, H.H., Cooper, J.E., Cavagna, L., Ricci, S., Riccobene, L.: Fast prediction of worst case gust loads. In: IFASD Scientific Committee Conference. International Forum on Aeroelasticity & Structural Dynamics, Bristol, UK (2013)

  6. Choi, S.K., Grandi, R.V., Canfield, R.A.: Reliability-based Structural Design. Springer-Verlag, London (2010)

    Google Scholar 

  7. Xiu, D., Karniadakis, G.E.: The wiener-askey polynomial chaos for stochastic differential equations. Soc Ind. Appl. Math. J. Sci. Comput. (SIAM J.Sci) 24(2), 619–644 (2002)

    MathSciNet  MATH  Google Scholar 

  8. Eldred, M.S.: Recent advances in non-intrusive polynomial chaos and stochastic collocation methods for uncertainty analysis and design. In: 50th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and material conference, Palm Springs, California, 4–7 May 2009

  9. Georgiou, G., Manan, A., Cooper, J.E.: Modeling composite wing aeroelastic behaviour with uncertain damage severity and material properties. Mech. Syst. Signal Process. 32, 32–43 (2012)

    Article  Google Scholar 

  10. Badcock, K.J., Khodaparast, H.H., Timme, S., Mottershead, J.E.: Calculating the influence of structural uncertainty on aeroelastic limit cycle response. In: 52nd AIAA/ASME/ASCE/AHS/ASC Structures, structural dynamics, and materials conference, Denver, Colorado, 4–8 Apr 2011

  11. Scarth, C., Cooper, J.E., Weaver, P.M., Silva, G.H.C.: Uncertainty quantification of aeroelastic stability of composite plate wings using lamination parameters. Compos. Struct. 116, 84–93 (2014)

    Article  Google Scholar 

  12. Choi, S.K., Grandhi, R.V., Canfield, R. A., Pettit, C.L.: Polynomial chaos expansion with latin hypercube sampling for estimating response variability. AIAA J. 42(6), 1191–1198 (2004)

    Article  Google Scholar 

  13. Pettit, C.L.: Uncertainty quantification in aeroelasticity: recent results and research challenges. J. Aircr. 41(5), 1217–1229 (2004)

    Article  Google Scholar 

  14. Ouyang, Q., Chen, X., Cooper, J.E.: Robust aeroelastic analysis and optimization of composite wing under μ-analysis framework. J. Aircr. 50, 1299–1305 (2013)

    Article  Google Scholar 

  15. Albano, E., Rodden, W.P.: A doublet-lattice method for calculating lift distributions on oscillating surfaces in subsonic flows. AIAA J. 7(2), 279–285 (1969)

    Article  MATH  Google Scholar 

  16. Airworthiness standards part 25: transport category airplanes, subpart C, structure, flight maneuver and gust conditions. (§25.333 flight maneuvering envelope, §25.341 gust and turbulence loads), 6 Nov 2014. http://flightsimaviation.com/data/FARS/part_25.html

  17. Worden, K., Staszewski, W.J., Hensman, J.J.: Natural computing for mechanical systems research: a tutorial overview. Mech. Syst. Signal Process. 25(1), 4–111 (2011)

    Article  Google Scholar 

  18. Helton, J.C., Davis, F.J.: Sampling-Based Methods for Uncertainty and Sensitivity Analysis, SAND99-2240. Sandia National Laboratories, Albuquerque (2000)

    Book  Google Scholar 

  19. Manan, A., Cooper, J.E.: Design of composite wings including uncertainties—a probabilistic approach. J Aircr. 46(2), 601–607 (2009)

    Article  Google Scholar 

  20. Golub, G.H., Van Loan, C.F.: Matrix Computations, 2nd edn. John Hopkins Press, Baltimore (1989)

    MATH  Google Scholar 

  21. Gemulla, R., Miettinen, P.: Data mining and matrices, singular value decomposition, April 25, 2013. http://resources.mpi-inf.mpg.de/d5/teaching/ss13/dmm/slides/03-svd-handout.pdf. downloaded in May 2014

  22. Sarkar, S., Dong, A., Gero, J. S.: Design optimization problem reformulation using singular value decomposition. J. Mech. Des. 131(8), 081006 (2009)

    Article  Google Scholar 

  23. McGuinness, S., Armstrong, C.G., Murphy, A., Barron, J., Hockenhull, M.: Improving aircraft stress-loads evaluation and optimization procedures. In: 2nd Aircraft structural design conference, London, United Kingdom, (2010)

  24. Forrester, A., Sóbester, A., Keane, A.: Engineering Design via Surrogate Modelling: a practical guide. Wiley, Chichester (2008)

    Book  Google Scholar 

  25. Couckuyt, I., Dhaene, T., Demeester, P.: ooDACE toolbox, a matlab kriging toolbox: getting started. http://www.sumo.intec.ugent.be/sites/sumo/files/gettingstarted.pdf (2013)

  26. Joseph, V.R., Hung, Y., Sudjianto A.: Blind kriging: a new method for developing metamodels. ASME J. Mech. Des. 130, 031102-1–031102-8 (2008)

    Article  Google Scholar 

  27. Couckuyt, I., Forrester, A., Gorissen, D., De Turck, F., Dhaene, T.: Blind kriging: implementation and performance analysis. Adv. Eng. Softw. 49, 1–13 (2012)

    Article  Google Scholar 

  28. Couckuyt, I., Declercq, F., Dhaene, T., Rogier, H., Knockaert, L.: Surrogate-based infill optimization applied to electromagnetic problems. Spec. Issue Adv. Des. Optim. Microw./RF Circuits Syst. 20(5), 492–501 (2010)

    Google Scholar 

  29. Georgiou, G., Khodaparast, H.H., Cooper J.E.: Uncertainty quantification of aeroelastic stability. In: Mathematics of Uncertainty Modeling in the Analysis of Engineering and Science Problems. IGI Global, pp. 329–356 (2014)

  30. Martin, J.D., Simpson T.W.: On the use of kriging models to approximate deterministic computer models. In: Proceedings of DETC’04: ASME 2004 international design engineering technical conference and computer and information in engineering conference, Salt Lake City, Utah USA, Sept 28–Oct 2 2004

  31. StatSoft, Inc. (2013). Electronic Statistics Textbook. Tulsa, OK: StatSoft. WEB: http://www.statsoft.com/textbook/

  32. Tong, M.T.: A probabilistic approach to aeropropulsion system assessment, NASA Technical Reports Server NASA/TM-2000-210334, Glenn Research Center, Cleveland, Ohio, USA. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20000056043.pdf

Download references

Acknowledgments

The research leading to these results has received funding from the European Community’s Marie Curie Initial Training Network (ITN) on Aircraft Loads Prediction using Enhanced Simulation (ALPES) FP7-PEOPLE-ITN-GA-2013-607911. The partners in the ALPES ITN are the University of Bristol, Siemens and Airbus Operations Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Tartaruga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tartaruga, I., Cooper, J.E., Lowenberg, M.H. et al. Prediction and uncertainty propagation of correlated time-varying quantities using surrogate models. CEAS Aeronaut J 7, 29–42 (2016). https://doi.org/10.1007/s13272-015-0172-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-015-0172-1

Keywords

Navigation