Skip to main content
Log in

A predictive envelope protection system using linear, parameter-varying models

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

A parameter-varying, model-predictive envelope protection system is developed simplifying the controller structures required to keep the aircraft within a safe angle-of-attack and normal load factor envelope. The idea of a quasi-steady flight condition is used to map the flight envelope limits onto the setpoint values of a single flight control law. Since no mode switching is required, the selected level of automation, i.e., autopilot and flight management functionalities, is independent from the proximity to any angle-of-attack and normal load factor limit. In contrast to previous approaches, the proposed algorithm makes use of a quasi-linear, parameter-varying control loop model to adapt to the true nonlinear aircraft behavior. A variance-based sensitivity analysis highlights the most significant scheduling variables within this control loop model and, therefore, indicates the option of model reduction and improvement in efficiency, respectively. The proposed envelope protection system is evaluated throughout virtual flight tests with the unmanned flight test platform ULTRA-Dimona showing promising overall performance also in the presence of wind and turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. ULTRA-project: http://www.fst.tu-harburg.de/ultra.

Abbreviations

ANOVA:

Analysis of variances

CG:

Center of gravity

DOE:

Design of experiments

DT:

Dynamic trim

LPV:

Linear, parameter-varying

LTI:

Linear, time-invariant

LTV:

Linear, time-varying

MITL:

Model-in-the-loop

q-LPV:

Quasi-linear, parameter-varying

ULTRA:

Unmanned low-cost testing research aircraft

\(b\) :

Aerodynamic wing span

\(c\) :

Aerodynamic wing chord

\(e_j\) :

jth matrix element

\(g\) :

Gravitational acceleration

\(m\) :

Aircraft mass

\(n_z\) :

Normal load factor

\(p\) :

Roll rate

\(\mathbf {p}\) :

Linearization point

\(q\) :

Pitch rate

\(r\) :

Yaw rate

\(\mathbf {r}\) :

Lever arm vector

\(u\) :

Velocity component x-axis

\(\mathbf {u}\) :

Control input vector

\(v\) :

Velocity component y-axis

\(w\) :

Velocity component z-axis

\(\mathbf {x}\) :

State variable vector

\(\mathbf {y}\) :

Vector of limited variables

\(\mathbf {A}\) :

System matrix

\(\mathbf {B}\) :

Input matrix

\(C\) :

Aerodynamic coefficient

\(\mathbf {C}\) :

Output matrix

\(\mathbf {D}\) :

Feedforward matrix

\(G\) :

Gravity vector

\(I\) :

Moment resp. product of inertia

\(\mathbf {I}\) :

Inertia tensor

\(L\) :

Moment x-axis

Set of linearized, critical control movements

\(M\) :

Moment y-axis

\(\mathbf {M}\) :

Dynamic trim sensitivity to state variables

Rotation matrix

\(N\) :

Moment z-axis

\(\mathbf {N}\) :

Dynamic trim sensitivity to state variable time rates of change

\(\mathbf {Q}\) :

Moment vector

\(\mathbf {R}\) :

Force vector

\(S\) :

Aerodynamic wing area

\(S_M\) :

Main effect

\(S_T\) :

Total effect

\(S({\varvec{\varTheta }})\) :

Parameter-varying system

\(\mathbf {S}\) :

Dynamic trim sensitivity to control inputs

\(U\) :

Set of critical control inputs

\(V\) :

Speed

\(\mathbf {V}\) :

Velocity

\(X\) :

Force x-axis

\(Y\) :

Force y-axis

\(Z\) :

Force z-axis

\(\alpha\) :

Angle-of-attack

\(\beta\) :

Angle-of-sideslip

\(\zeta\) :

Rudder deflection

\(\eta\) :

Elevator deflection

\(\eta _F\) :

Thrust lever position

\(\xi\) :

Aileron deflection

\(\rho\) :

Air density

\({\varvec{\rho }}\) :

Scheduling variable vector

\(\varTheta\) :

Pitch attitude

\({\varvec{\varTheta }}\) :

Scheduling parameter vector

\(\varPhi\) :

Bank angle

\({\varvec{\varOmega }}\) :

Angular velocity

\(a\) :

Aerodynamic coordinate system

\(b\) :

Body-fixed coordinate system

\(e\) :

Experimental coordinate system

\(\rm{ext}\) :

External

\(f\) :

Fast

\(g\) :

Earth-fixed coordinate system

\(i\) :

ith variable

\(\rm{int}\) :

Internal

\(l\) :

Rolling moment related

\(\rm{lim}\) :

Limit

\(m\) :

Pitching moment related

\(n\) :

Yawing moment related

\(s\) :

Slow

\(x\) :

x-axis component

\(y\) :

y-axis component

\(z\) :

z-axis component

\(A\) :

Aerodynamic related

\(D\) :

Drag related

\(\rm{DT}\) :

Dynamic trim related

\(F\) :

Propulsion related

\(K\) :

Flight path related

\(L\) :

Lift related

\(W\) :

Wind related

\(Y\) :

Sideforce related

0:

Base point

\(^*\) :

Dimensionless variable

References

  1. Apkarian, P., Gahinet, P., Biannic, J.: Self-scheduled H-infinity control of a missile via lmis. In IEEE conference on decision and control, vol. 33, pp. 3312–3317 (1994)

  2. Balas, G.: Linear, parameter-varying control and its application to aerospace systems. In: Proceedings of International Congress of the Aeronautical Sciences (ICAS), Toronto (2002)

  3. Brockhaus, R., Alles, W., Luckner, R.: Flugregelung. Springer, Heidelberg (2011)

    Book  Google Scholar 

  4. Falkena, W., Borst, C., Chu, Q., Mulder, J.: Investigation of practical flight envelope protection systems for small aircraft. J. Guid. Control Dynam. 34(4), 976–988 (2011)

    Article  Google Scholar 

  5. Halle, M., Thielecke, F., Lindenau, O.: Comparison of real-time flight loads estimation methods. In Deutscher Luft- und Raumfahrtkongress, DGLR (2013)

  6. Han, S.: Varianzbasierte Sensitivitätsanalyse als Beitrag zur Bewertung der Zuverlässigkeit adaptronischer Struktursysteme. PhD thesis, Technische Universität Darmstadt, Darmstadt (2011)

  7. Horn, J.: Flight envelope limit detection and avoidance. PhD thesis, Georgia Institute of Technology, Atlanta (1999)

  8. Horn, J., Calise, A.J., Prasad, J.: Development of enevlope protection systems for rotorcraft. In American Helicopter Society 55th Annual Forum, AHS. 2025–2036 (1999)

  9. Horn, J., Calise, A.J., Prasad, J.: Flight envelope cueing on a tilt-rotor aircraft using neural network limit prediction. J. Am. Helicopter Soc. 46(1), 23–31 (2001)

    Article  Google Scholar 

  10. Horn, J., Calise, A.J., Prasad, J.: Flight enevlope limit detection and avoidance for rotorcraft. J. Am. Helicopter Soc. 47(4), 253–262 (2002)

    Article  Google Scholar 

  11. Jansen, M.: Analysis of variance designs for model output. Compu. Phys. Commun. 117(1–2), 35–43 (1999)

    Article  MATH  Google Scholar 

  12. Krings, M., Annighöfer, B., Thielecke, F. ULTRA - unmanned low-cost testing research aircraft. In ACC - American Control Conference, Washington D.C. (2013)

  13. Krings, M., Henning, K., Thielecke, F.: Flight test oriented autopilot design for improved aerodynamic parameter identification. In CEAS EuroGNC - specialist conference on guidance, navigation, and control, vol. 2, Netherlands (2013)

  14. Krings, M., Thielecke, F.: Ein integrierter Ansatz für ein prädiktives Autopiloten- und Flugbereichssicherungssystem. In Deutscher Luft- und Raumfahrtkongress, DGLR (2012)

  15. Krings, M., Thielecke, F.: An integrated approach to predictive flight guidance and envelope protection. In AIAA guidance, navigation and control conference, AIAA (2012)

  16. Kwiatkowski, A.: LPV modeling and application of LPV controllers to SI engines. PhD thesis, Hamburg University of Technology, Hamburg (2007)

  17. Kwiatkowski, A., Boll, M., Werner, H.: Automated generation and assessment of affine LPV Models. In IEEE Conference on Decision and Control. vol. 45, 6690–6695, San Diego (2006)

  18. Lambregts, A.A.: Generalized automatic and augmented manual flight control. In Berlin Technical University Colloqium, FMRA - Technische Universität Berlin, Berlin, pp. 1–73 (2006). Digital Version

  19. Leith, D., Leithead, W.: Comments on the prevalance of linear parameter varying systems. University of Strathclyde, Glasgow (1999)

    Google Scholar 

  20. Marcos, A., Balas, G.: Development of linear-parameter-varying models for aircraft. AIAA J. Guid Control Dynam. 27(2), 218–228 (2004)

    Article  Google Scholar 

  21. Niedermeier, D., Lambregts, A.: Design of an intuitive flight control system. In CEAS European Air & Space Conference, Royal Aeronautical Society, pp. 1–18 (2009). Digital Version

  22. Pandita, R.: Dynamic flight envelope assessment with flight safety applications. PhD thesis, University of Minnesota, Minnesota (2010)

  23. Papageorgio, G.: Robust control system design: H-infinity loop shaping and aerospace applications. PhD thesis, Darwin Collage, Cambridge (1998)

  24. Sahani, N., Horn, J.: Adaptive model inversion control of a helicopter with structural load limiting. AIAA J. Guid. Control Dynam. 29(2) , 411–420 (2006)

    Article  Google Scholar 

  25. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S.: Global sensitivity analysis. The primer. Wiley, Chichester (2008)

    MATH  Google Scholar 

  26. Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M.: Sensitivity analysis in pratice: a guide to assessing scientific models. Wiley, Chichester (2004)

    Google Scholar 

  27. Sommer, S., Korn, U.: Regelung nichtlinearer Strecken mittels parameterveränderlicher Systeme. Electrical Eng. 82, 59–70 (1999)

    Article  Google Scholar 

  28. Unnikrishnan, S.: Adaptive envelope protection methods for aircraft. PhD thesis, Georgia Institute of Technology, Atlanta (2006)

  29. Unnikrishnan, S., Prasad, J., Yavrucuk, I.: Flight evaluation of a reactionary envelope protection system for uavs. J Am Helicopter Soc. 56(1), 1–14 (2011)

    Article  Google Scholar 

  30. Vachtsevanos, G., Freeman, R., Prasad, J., Yavrucuk, I., Schrage, D., Heck, B., Wills, L.: An intelligent methodology for real-time adaptive mode transitioning and limit avoidance of unmanned aerial vehicles. In: T. Samad and G. Balas, (eds.) Software-enabled control: information technology for dynamical systems, pp. 225–252. Wiley-Interscience, Hoboken (2003)

  31. Vredenborg, E., Thielecke, F.:Thermal management investigations for fuel cell systems on-board commercial aircraft. In SAE AeroTech Congress and Exhibition (Montral, Canada), SAE International (2013)

  32. Yavrucuk, I.: Adaptive limit margin detection and limit avoidance. PhD thesis, Georgia Institute of Technology, Atlanta (2003)

  33. Yavrucuk, I., Prasad, J., Unnikrishnan, S.: Envelope protection for autonomous unmanned aerial vehicles. J.Guid. Control Dynam. 32(1), 248–261 (2009)

    Article  Google Scholar 

  34. Yavrucuk, I., Unnikrishnan, S., Prasad, J.: Envelope protection in autonomous unmanned aerial vehicles. In american helicopter society 59th annual forum. pp.1919–1929. AHS (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Krings.

Additional information

This paper is based on a presentation at the German Aerospace Congress, September 10–12, 2013, Stuttgart, Germany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krings, M., Thielecke, F. A predictive envelope protection system using linear, parameter-varying models. CEAS Aeronaut J 6, 95–108 (2015). https://doi.org/10.1007/s13272-014-0129-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-014-0129-9

Keywords

Navigation