Skip to main content
Log in

Influence of an imidazolium salt on the curing behaviour of an epoxy-based hot-melt prepreg system for non-structural aircraft applications

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

This study investigates the influence of an imidazolium salt as initiator for the curing of an epoxy novolac-based hot-melt prepreg resin system for production of non-structural aircraft components. The salt decomposes at a specific temperature during curing, yielding an imidazole. This molecule initiates a fast anionic homopolymerization. The effect of the imidazolium salt on the curing kinetics is studied extensively by differential scanning calorimetry (DSC) as a function of its concentration. Onset and peak temperatures of the curing reactions are determined from dynamic DSC experiments at various heating rates. The curing behaviour at 140 °C is analysed in more detail by isothermal DSC measurements. Calculated isothermal conversion curves prove that the flame retarded epoxy novolac formulation can be cured within less than 60 min at this specific temperature by introducing six parts of the imidzolium salt per hundred parts of preformulated resin. At the same time glass transition temperatures above 130 °C evaluated by DSC or app. 155 °C determined by DMA can be reached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. phr = parts per hundred parts resin.

References

  1. Heth, J.: From art to science: a prepreg overview. High Perform Compos 8, 32–36 (2000)

    Google Scholar 

  2. Mouritz, A.P., Gibson, A.G.: Fire properties of polymer composite materials. Springer, Dodrecht (2006)

    Google Scholar 

  3. Taylor, J.G.: Composites. In: Pilato, L.A. (ed.) Phenolic resins: a century of progress, pp. 263–306. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Pham, H.Q., Marks, M.J.: Epoxy Resins. In: Mark, H.F. (ed.) Encyclopedia of polymer science and technology, pp. 678–804. John Wiley & Sons, New York (2004)

    Google Scholar 

  5. Levchik, S.V., Weil, E.D.: Thermal decomposition, combustion and flame-retardancy of epoxy resins––a review of the recent literature. Polym. Int. (2004). doi:10.1002/pi.1473

    Google Scholar 

  6. Neumeyer, T., Bonotto, G., Kraemer, J., Altstaedt, V., Doering, M.: Fire behaviour and mechanical properties of an epoxy hot-melt resin for aircraft interiors. Compos Interface (2013). doi:10.1080/15685543.2013.807153

    Google Scholar 

  7. Ricciardi, F., Romanchick, W.A., Joullié, M.M.: 1,3-dialkylimidazolium salts as latent catalysts in the curing of epoxy resins. J Polym Sci Polym Lett Ed 21(8), 633–638 (1983)

    Article  Google Scholar 

  8. Wasserscheid, P., Keim, W.: Ionic liquids-new “solutions” for transition metal catalysis. Angew. Chem. 39, 3772–3789 (2000)

    Article  Google Scholar 

  9. Rahmathullah, M.A.M., Jeyarajasingam, A., Merritt, B., Van Landingham, M., McKnight, S.H., Palmese, G.R.: Room temperature ionic liquids as thermally latent initiators for polymerization of epoxy resins. Macromolecules 42, 3219–3221 (2009)

    Article  Google Scholar 

  10. Kowalczyk, K., Spychaj, T.: Ionic liquids as convenient latent hardeners of epoxy resins: rapid communications. Polimery 48, 833–835 (2003)

    Google Scholar 

  11. Soares, B.G., Livi, S., Duchet-Rumeau, J., Gerard, J.F.: Synthesis and characterization of epoxy/MCDEA networks modified with imidazolium-based ionic liquids. Macromol. Mater. Eng. (2011). doi:10.1002/mame.201000388

    Google Scholar 

  12. Liebner, F., Patel, I., Ebner, G., Becker, E., Horix, M., Potthast, A., Rosenau, T.: Thermal aging of 1-alkyl-3-methylimidazolium ionic liquids and its effect on dissolved cellulose. Holzforschung 64, 161–166 (2010)

    Article  Google Scholar 

  13. Maka, H., Spychaj, T., Pilawka, R.: Epoxy resin/ionic liquid systems: the influence of imidazolium cation size and anion type on reactivity and thermomechanical properties. Ind. Eng. Chem. Res. (2012). doi:10.1021/ie202321j

    MATH  Google Scholar 

  14. BASF SE: how stable are ionic liquids? http://www.intermediates.basf.com/chemicals/ionische-fluessigkeiten/faq (2013). Accessed 3rd July 2013

  15. Ooi, S., Cook, W., Simon, G., Such, C.: DSC studies of the curing mechanisms and kinetics of DGEBA using imidazole curing agents. Polymer 41, 3639–3649 (2000)

    Article  Google Scholar 

  16. Ricciardi, F., Romanchick, W.A., Joullié, M.M.: Mechanism of imidazole catalysis in the curing of epoxy resins. J Polym Sci Polym Chem Ed 21, 1475–1490 (1983)

    Article  Google Scholar 

  17. Pascault, J.P., Williams, R.J.J.: General Concepts about Epoxy Polymers. In: Pascault, J.P., Williams, R.J.J. (eds.) Epoxy polymers, pp. 1–12. Wiley, Weinheim (2010)

    Chapter  Google Scholar 

  18. Seibold, S.: Halogenfrei flammgeschützte Epoxidharzsysteme auf der Basis von Präformulierungen [Halogen-free flame retardant epoxy resins based on preformulations]. PhD-Thesis, Ruprecht-Karls-Universität, Heidelberg (2007)

  19. Menczel, J.D., Prime, R.B.: Thermal analysis of polymers. Wiley, Hoboken (2009)

    Book  Google Scholar 

  20. Vyazovkin, S.: Isoconversional kinetics. In: Brown, M.E., Gallagher, P.K. (eds.) Handbook of thermal analysis and calorimetry, pp. 503–538. Elsevier, Amsterdam (2008)

    Google Scholar 

  21. Treloar, L.R.G.: The physics of rubber elasticity. Oxford University Press, Oxford (1975)

    Google Scholar 

  22. Katz, D., Tobolsky, A.V.: Rubber elasticity in a highly crosslinked epoxy system. Polymer 4, 417–421 (1963)

    Article  Google Scholar 

  23. Ehrenstein, G.W., Riedel, G., Trawiel, P.: Thermal analysis of plastics. Carl Hanser Verlag GmbH & Co. KG, München (2004)

    Book  Google Scholar 

  24. Liu, X.D., Sudo, A., Endo, T.: Efficient accelerating effect of carbonyldiimidazole on epoxy-dicyandiamide curing system. J Polymer Sci Polymer Chem 49, 250–256 (2011)

    Article  Google Scholar 

  25. Dowbenko, R., Anderson, C.C., Chang, W.H.: Imidazole complexes as hardeners for epoxy adhesives. Ind Eng Chem Prod Res Dev 10, 344–351 (1971)

    Article  Google Scholar 

  26. Pfitzmann, A., Schlothauer, K., Fedtke, M.: Epoxy resin curing by dicyandiamide using model compounds. Polym. Bull. 27, 59–66 (1991)

    Article  Google Scholar 

  27. Hong, S.G., Wang, T.C.: The effect of copper oxides on the curing of brominated epoxy resins. Thermochim. Acta 237, 305–316 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Altstaedt.

Additional information

This paper is based on a presentation at the German Aerospace Congress, September 10–12, 2013, Stuttgart, Germany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neumeyer, T., Staudigel, C., Bonotto, G. et al. Influence of an imidazolium salt on the curing behaviour of an epoxy-based hot-melt prepreg system for non-structural aircraft applications. CEAS Aeronaut J 6, 31–37 (2015). https://doi.org/10.1007/s13272-014-0127-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-014-0127-y

Keywords

Navigation