Skip to main content
Log in

De novo transcriptome analysis and antimicrobial peptides screening in skin of Paa boulengeri

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Secretion of amphibian skins contain bioactive peptides that considered being an enormous medicine resource pending further exploitation and utilization. In this study, we found the skin secretion of Paa boulengeri exhibited stronger bacteriostatic activity when compared to H. guentheri, R. nigromaculata, and R. chensinensis, particularly against Bacillus subtilis. To discover antibacterial related genes in P. boulengeri, the cDNA library of P. boulengeri skin was constructed and subjected to RNA sequencing analysis. The assembly of the Illumina datasets was optimized using various assembly programs and parameters. The final optimized assembly generated 94,108 transcripts with an average length of 1292 bp and N50 of 2257 bp, representing 121.6 Mb of the P. boulengeri transcriptome. Among the 94,108 transcripts, 38,584 (40.1%) transcripts were annotated and 29,260 (31.1%) were matched with unique protein accessions in the Nr database. A total of 3165 potential cDNA-derived simple sequence repeats were identified, which distributed among 3034 transcripts. In addition, 177 antibacterial peptides and nine different Toll-like receptors were identified in P. boulengeri skin based on this transcriptome dataset. Moreover, some AMPs exhibited high expressions in P. boulengeri, such as Japonicin, which reflects mutual evolution between P. boulengeri and environment. These results provide a comprehensive sequence resource and molecular basis for researches on functional genomics and pharmacological activities of P. boulengeri.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abraham P, George S, Kumar KS (2014) Novel antibacterial peptides from the skin secretion of the Indian bicoloured frog Clinotarsus curtipes. Biochimie 97:144–151

    Article  CAS  PubMed  Google Scholar 

  • Abrudan J, Ramalho-Ortigao M, O’Neil S, Stayback G, Wadsworth M, Bernard M et al (2013) The characterization of the Phlebotomus papatasi transcriptome. Insect Mol Biol 22:211–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altincicek B, Elashry A, Guz N, Grundler FMW, Vilcinskas A, Dehne HW (2013) Next generation sequencing based transcriptome analysis of septic-injury responsive genes in the beetle Tribolium castaneum. PLoS ONE 8(1):e52004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amiche M, Seon AA, Pierre TN, Nicolas P (1999) The dermaseptin precursors: a protein family with a common preproregion and a variable C-terminal antimicrobial domain. FEBS Lett 456: 352–356

    Article  CAS  PubMed  Google Scholar 

  • Bai B, Wang L, Zhou M, Chen T, Shaw C (2010) Construction of cDNA libraries from trifluoroacetic acid-solvated amphibian skin secretions: molecular cloning of multiple bombinin-like peptide precursor transcripts from a library of yellow-bellied toad (Bombina variegata) secretion. Regul Peptides 164:34–34

    Article  Google Scholar 

  • Bai B, Zhang YQ, Wang H, Zhou M, Yu Y, Ding SJ, Chen TB, Wang L, Shaw C (2013) Parallel peptidome and transcriptome analyses of amphibian skin secretions using archived frozen acid-solvated samples. Mol Biotechnol 54:187–197

    Article  CAS  PubMed  Google Scholar 

  • Basir YJ, Knoop FC, Dulka J, Conlon JM (2000) Multiple antimicrobial peptides and peptides related to bradykinin and neuromedin N isolated from skin secretions of the pickerel frog, Rana palustris. BBA-Biomembr 1543: 95–105

    CAS  Google Scholar 

  • Bauersachs S, Wolf E (2012) Transcriptome analyses of bovine, porcine and equine endometrium during the pre-implantation phase. Anim Reprod Sci 134:84–94

    Article  CAS  PubMed  Google Scholar 

  • Ben Menachem-Zidon O, Avital A, Ben-Menahem Y, Goshen I, Kreisel T, Shmueli EM et al (2011) Astrocytes support hippocampal-dependent memory and long-term potentiation via interleukin-1 signaling. Brain Behav Immun 25:1008–1016

    Article  CAS  PubMed  Google Scholar 

  • Beutler B (2004) Innate immunity: an overview. Mol Immunol 40:845–859

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brocker C, Thompson D, Matsumoto A, Nebert DW, Vasiliou V (2010) Evolutionary divergence and functions of the human interleukin (IL) gene family. Hum Genom 5:30–55

    Article  CAS  Google Scholar 

  • Buchanan CE, Strominger JL (1976) Altered penicillin-binding components in penicillin-resistant mutants of Bacillus subtilis. Proc Natl Acad Sci USA 73:1816–1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulet P, Stocklin R, Menin L (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 198:169–184

    Article  CAS  PubMed  Google Scholar 

  • Che QL, Zhou Y, Yang H, Li JX, Xu X, Lai R (2008) A novel antimicrobial peptide from amphibian skin secretions of Odorrana grahami. Peptides 29:529–535

    Article  CAS  PubMed  Google Scholar 

  • Chen TB, Li L, Zhou M, Rao PF, Walker B, Shaw C (2006) Amphibian skin peptides and their corresponding cDNAs from single lyophilized secretion samples: Identification of novel brevinins from three species of Chinese frogs. Peptides 27:42–48

    Article  PubMed  Google Scholar 

  • Chen L, Liu TF, Yang DY, Nong X, Xie Y, Fu Y, Wu XH, et al (2013) Analysis of codon usage patterns in Taenia pisiformis through annotated transcriptome data. Biochem Bioph Res Comm 430: 1344–1348

    Article  CAS  Google Scholar 

  • Clark DP, Durell S, Maloy WL, Zasloff M (1994) Ranalexin. A novel antimicrobial peptide from bullfrog (Rana catesbeiana) skin, structurally related to the bacterial antibiotic, polymyxin. J Biol Chem 269:10849–10855

    CAS  PubMed  Google Scholar 

  • Cogalniceanu D, Szekely P, Samoila C, Iosif R, Tudor M, Plaiasu R, et al (2013) Diversity and distribution of amphibians in Romania. Zookeys 296:35–57

    Article  Google Scholar 

  • Conlon JM, Halverson T, Dulka J, Platz JE, Knoop FC (1999) Peptides with antimicrobial activity of the brevinin-1 family isolated from skin secretions of the southern leopard frog, Rana sphenocephala. J Pept Res 54:522–527

    Article  CAS  PubMed  Google Scholar 

  • Conlon JM, Kolodziejek J, Nowotny N (2004) Antimicrobial peptides from ranid frogs: taxonomic and phylogenetic markers and a potential source of new therapeutic agents. BBA-Biomembr 1696:1–14

    CAS  Google Scholar 

  • Coote PJ, Holyoak CD, Bracey D, Ferdinando DP, Pearce JA (1998) Inhibitory action of a truncated derivative of the amphibian skin peptide dermaseptin s3 on Saccharomyces cerevisiae. Antimicrob Agents Chem 42: 2160–2170

    CAS  Google Scholar 

  • Daum JM, Davis LR, Bigler L, Woodhams DC (2012) Hybrid advantage in skin peptide immune defenses of water frogs (Pelophylax esculentus) at risk from emerging pathogens. Infect Genet Evol 12:1854–1864

    Article  CAS  PubMed  Google Scholar 

  • Djong HT, Matsui M, Kuramoto M, Nishioka M, Sumida M (2011) A new species of the Fejervarya limnocharis complex from Japan (Anura, Dicroglossidae). Zool Sci 28:922–929

    Article  PubMed  Google Scholar 

  • Du FK, Xu F, Qu H, Feng SS, Tang JJ, Wu RL (2013) Exploiting the transcriptome of Euphrates Poplar, Populus euphratica (Salicaceae) to develop and characterize new EST-SSR markers and construct an EST-SSR database. PLoS ONE 8(4):e61337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan J, Xia C, Zhao G, Jia J, Kong X (2012) Optimizing De novo common wheat transcriptome assembly using short-read RNA-Seq data. BMC Genom 13:392

    Article  CAS  Google Scholar 

  • Durdu B, Durdu Y, Gulec N, Islim F, Bicer M (2012) A rare cause of pneumonia: Shewanella putrefaciens. Mikrobiyol Bul 46:117–121

    PubMed  Google Scholar 

  • Gahlan P, Singh HR, Shankar R, Sharma N, Kumari A, Chawla V et al (2012) De novo sequencing and characterization of Picrorhiza kurrooa transcriptome at two temperatures showed major transcriptome adjustments. BMC Genom 13(1):126

    Article  CAS  Google Scholar 

  • Gao XG, Han JB, Lu ZC, Li YF, He CB (2013) De novo assembly and characterization of spotted seal Phoca largha transcriptome using Illumina paired-end sequencing. Comp Biochem Phys D 8:103–110

    CAS  Google Scholar 

  • Ghiselli F, Milani L, Chang PL, Hedgecock D, Davis JP, Nuzhdin SV et al (2012) De novo assembly of the Manila clam Ruditapes philippinarum transcriptome provides new insights into expression bias, mitochondrial doubly uniparental inheritance and sex determination. Mol Biol Evol 29:771–786

    Article  CAS  PubMed  Google Scholar 

  • Govender T, Dawood A, Esterhuyse AJ, Katerere DR (2012) Antimicrobial properties of the skin secretions of frogs. S Afr J Sci 108:25–30

    CAS  Google Scholar 

  • Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V et al (2010) The genome of the Western clawed frog Xenopus tropicalis. Science 328:633–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hen Y, Chen A, Fang J (2001) Geographical distribution patterns of endangered fishes, amphibians, reptiles and mammals and their hotspots in China: a study based on China Red Data Book of Endangered Animals. Chin Biodivers 10(4):359–368

    Google Scholar 

  • Isaacson T, Soto A, Iwamuro S, Knoop FC, Conlon JM (2002) Antimicrobial peptides with atypical structural features from the skin of the Japanese brown frog Rana japonica. Peptides 23:419–425

    Article  CAS  PubMed  Google Scholar 

  • Jantra S, Paulesu L, Lo Valvo M, Lillo F, Ietta F, Avanzati AM, et al (2011) Cytokine components and mucosal immunity in the oviduct of Xenopus laevis (amphibia, pipidae). Gen Comp Endocr 173:454–460

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Cai YM, Chen LQ, Zhang XW, Hu SN, Wang Q (2009) Functional annotation and analysis of expressed sequence tags from the hepatopancreas of mitten crab (Eriocheir sinensis). Mar Biotechnol 11:317–326

    Article  CAS  PubMed  Google Scholar 

  • Kaisho T, Akira S (2006) Toll-like receptor function and signaling. J Allergy Clin Immun 117(5):979–987

    Article  CAS  PubMed  Google Scholar 

  • Kuckelhaus SAS, Leite JRSA, Muniz-Junqueira MI, Sampaio RN, Bloch C, Tosta CE (2009) Antiplasmodial and antileishmanial activities of phylloseptin-1, an antimicrobial peptide from the skin secretion of Phyllomedusa azurea (Amphibia). Exp Parasitol 123:11–16

    Article  PubMed  Google Scholar 

  • Lai R, Zheng YT, Shen JH, Liu GJ, Liu H, Lee WH et al (2002) Antimicrobial peptides from skin secretions of Chinese red belly toad Bombina maxima. Peptides 23:427–435

    Article  CAS  PubMed  Google Scholar 

  • Li JX, Xu XQ, Xu CH, Zhou WP, Zhang KY, Yu HN et al (2007) Anti-infection peptidomics of amphibian skin. Mol Cell Proteom 6:882–894

    Article  CAS  Google Scholar 

  • Ling G, Gao J, Zhang S, Xie Z, Wei L, Yu H, Wang Y (2014) Cathelicidins from the bullfrog Rana catesbeiana provides novel template for peptide antibiotic design. PLoS ONE 9:e93216

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu JY, Jiang JP, Wu ZJ, Xie F (2012) Antimicrobial peptides from the skin of the Asian frog, Odorrana jingdongensis: De novo sequencing and analysis of tandem mass spectrometry data. J Proteom 75:5807–5821

    Article  CAS  Google Scholar 

  • Luo C, Zheng L (2000) Independent evolution of Toll and related genes in insects and mammals. Immunogenetics 51:92–98

    Article  CAS  PubMed  Google Scholar 

  • Medzhitov R, Janeway C Jr (2000) The Toll receptor family and microbial recognition. Trends Microbiol 8:452–456

    Article  CAS  PubMed  Google Scholar 

  • Morikawa N, Hagiwara K, Nakajima T (1992) Brevinin-1 and – 2, unique antimicrobial peptides from the skin of the frog, Rana brevipoda porsa. Biochem Biophy Res Comm 189:184–190

    Article  CAS  Google Scholar 

  • Ong WD, Voo LYC, Kumar VS (2012) De novo assembly, characterization and functional annotation of pineapple fruit transcriptome through massively parallel sequencing. PLoS ONE 7(10):e46937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pal A, Ghosh S, Paul AK (2006) Biosorption of cobalt by fungi from serpentine soil of Andaman. Bioresour Technol 97:1253–1258

    Article  CAS  PubMed  Google Scholar 

  • Paszkiewicz K, Studholme DJ (2010) De novo assembly of short sequence reads. Brief Bioinform 11:457–472

    Article  CAS  PubMed  Google Scholar 

  • Pioli PA, Amiel E, Schaefer TM, Connolly JE, Wira CR, Guyre PM (2004) Differential expression of Toll-like receptors 2 and 4 in tissues of the human female reproductive tract. Infect Immun 72:5799–5806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Procaccini C, Galgani M, De Rosa V, Matarese G (2012) Intracellular metabolic pathways control immune tolerance. Trends Immunol 33:1–7

    Article  CAS  PubMed  Google Scholar 

  • Rajeev KV, Thomas T, Nils S, Petetr L, Andreas G (2002) In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cell Mol Biol Lett 7:537–546

    Google Scholar 

  • Ranoa DR, Kelley SL, Tapping RI (2013) Human lipopolysaccharide-binding protein (LBP) and CD14 independently deliver triacylated lipoproteins to Toll-like receptor 1 (TLR1) and TLR2 and enhance formation of the ternary signaling complex. J Biol Chem 288:9729–9741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson LS, Cornman RS (2014) Transcriptome resources for the frogs Lithobates clamitans and Pseudacris regilla, emphasizing antimicrobial peptides and conserved loci for phylogenetics. Mol Ecol Resour 14:178–183

    Article  CAS  PubMed  Google Scholar 

  • Rollins-Smith LA, Reinert LK, O’Leary CJ, Houston LE, Woodhams DC (2005) Antimicrobial Peptide defenses in amphibian skin. Integr Comp Biol 45:137–142

    Article  CAS  PubMed  Google Scholar 

  • Roulin AC, Wu M, Pichon S, Arbore R, Kuhn-Buhlmann S, Kolliker M, et al (2014) De novo transcriptome hybrid assembly and validation in the European earwig (Dermaptera, Forficula auricularia). PLoS ONE 9:e94098

    Article  PubMed  PubMed Central  Google Scholar 

  • Schunter C, Vollmer SV, Macpherson E, Pascual M (2014) Transcriptome analyses and differential gene expression in a non-model fish species with alternative mating tactics. BMC Genomics 15:167

    Article  PubMed  PubMed Central  Google Scholar 

  • Simmaco M, Mignogna G, Barra D, Bossa F (1994) Antimicrobial peptides from skin secretions of Rana esculenta. Molecular cloning of cDNAs encoding esculentin and brevinins and isolation of new active peptides. J Biol Chem 269:11956–11961

    CAS  PubMed  Google Scholar 

  • Simmaco M, Mignogna G, Canofeni S, Miele R, Mangoni ML, Barra D (1996) Temporins, antimicrobial peptides from the European red frog Rana temporaria. Eur J Biochem 242:788–792

    Article  CAS  PubMed  Google Scholar 

  • Suzuki S, Ohe Y, Okubo T, Kakegawa T, Tatemoto K (1995) Isolation and characterization of novel antimicrobial peptides, rugosins A, B and C, from the skin of the frog, Rana rugosa. Biochem Biophy Res Comm 212:249–254

    Article  CAS  Google Scholar 

  • Tan MH, Au KF, Yablonovitch AL, Wills AE, Chuang J, Baker JC, Wong WH et al (2013) RNA sequencing reveals a diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. Genome Res 23:201–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao X, Fang Y, Xiao Y, Jin YL, Ma XR, Zhao Y, et al (2013) Comparative transcriptome analysis to investigate the high starch accumulation of duckweed (Landoltia punctata) under nutrient starvation. Biotechnol Biofuels 6(1):72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422

    Article  CAS  PubMed  Google Scholar 

  • Thomas P, Kumar TVV, Reshmy V, Kumar KS, George S (2012) A mini review on the antimicrobial peptides isolated from the genus Hylarana (Amphibia: Anura) with a proposed nomenclature for amphibian skin peptides. Mol Biol Rep 39:6943–6947

    Article  CAS  PubMed  Google Scholar 

  • Vences M, Kohler J (2008) Global diversity of amphibians (Amphibia) in freshwater. Hydrobiologia 595:569–580

    Article  Google Scholar 

  • Verma P, Shah N, Bhatia S (2013) Development of an expressed gene catalogue and molecular markers from the De novo assembly of short sequence reads of the lentil (Lens culinaris Medik.) transcriptome. Plant Biotechnol J 11:894–905

    Article  CAS  PubMed  Google Scholar 

  • Warr GW, Chapman RW, Smith LC (2003) Evolutionary immunobiology: new approaches, new paradigms. Dev Comp Immunol 27:257–262

    Article  CAS  PubMed  Google Scholar 

  • Woodhams DC, Rollins-Smith LA, Alford RA, Simon MA, Harris RN (2007) Innate immune defenses of amphibian skin: antimicrobial peptides and more. Anim Conserv 10:425–428

    Article  Google Scholar 

  • Woodhams DC, Bigler L, Marschang R (2012) Tolerance of fungal infection in European water frogs exposed to Batrachochytrium dendrobatidis after experimental reduction of innate immune defenses. BMC Vet Res 8(1):197

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang XH, Xia JN, Yu ZJ, Hu YH, Li FJ, Meng H et al (2012) Characterization of diverse antimicrobial peptides in skin secretions of Chungan torrent frog Amolops chunganensis. Peptides 38:41–53

    Article  CAS  PubMed  Google Scholar 

  • Zeng S, Xiao G, Guo J, Fei Z, Xu Y, Roe BA et al (2010) Development of a EST dataset and characterization of EST-SSRs in a traditional Chinese medicinal plant, Epimedium sagittatum (Sieb. Et Zucc.) Maxim. BMC Genomics 11:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Liang S, Duan J, Wang J, Chen S, Cheng Z et al (2012) De novo assembly and characterisation of the transcriptome during seed development, and generation of genic-SSR markers in peanut (Arachis hypogaea L.). BMC Genom 13:90

    Article  CAS  Google Scholar 

  • Zhao F, Yan C, Wang X, Yang Y, Wang G, Lee W et al (2014) Comprehensive transcriptome profiling and functional analysis of the frog (Bombina maxima) immune system. DNA Res 21(1):1–13

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant No. 31501273), the Programs for Science and Technology Development of Chongqing Province (Grant Nos. cstc2012gg-yyjs80004; cstc2015jcyjBX0013), and the Foundation for High-level Talents of Chongqing University of Art and Science (No. R2014LX07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingming Xu.

Ethics declarations

Conflict of interest

Yusong Jiang, Wenqiao Fan and Jingming Xu declare that they have no conflict of interest with the contents of the manuscript.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards established by the Chongqing University of Arts & Sciences’ IACUC committee.

Additional information

Yusong Jiang and Wenqiao Fan have contributed equally to the study.

Data accessibility: Raw sequence and the Transcriptome Shotgun Assembly data were submitted to the NCBI Short Read Archive (SRA) under Accession Numbers SRR2962603.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 11477 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Fan, W. & Xu, J. De novo transcriptome analysis and antimicrobial peptides screening in skin of Paa boulengeri . Genes Genom 39, 653–665 (2017). https://doi.org/10.1007/s13258-017-0532-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-017-0532-9

Keywords

Navigation