Skip to main content
Log in

MicroRNA expression profiles in conventional and micropropagated Dendrobium officinale

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

MicroRNA (miRNA) is defined as an endogenous ~22 nt noncoding RNA that has critical gene-regulatory functions in plants. Dendrobium officinale is among the most important herbs in traditional Chinese medicine. However, no miRNA of D. officinale has been reported to date. To identify the miRNA in D. officinale and to detect the differentially expressed miRNA between conventional and micropropagated D. officinale plants, miRNA microarray was performed following quantitative real-time RT-PCR validation. A total of 120 miRNAs from 37 miRNA families were identified in both conventional and micropropagated D. officinale plants. Among the total number of miRNAs, 45 miRNAs from six families were differentially expressed, including five up-regulated families (miR156, miR164, miR171, miR827 and miR529) and one down-regulated family (miR167) in micropropagated group. Web microrna designer and gene ontology term-enrichment analyses were applied for prediction and functional analysis of the target genes of differentially expressed miRNA. Such miRNAs are mainly related to hormone stimulus response, biological and metabolic process regulation, formation of intracellular organelle, and nucleic acid binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ason B, Darnell DK, Wittbrodt B, Berezikov E, Kloosterman WP, Wittbrodt J, Antin PB, Plasterk RH (2006) Differences in vertebrate microRNA expression. Proc Natl Acad Sci USA 103:14385–14389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baker CC, Sieber P, Wellmer F, Meyerowitz EM (2005) The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Curr Biol 15:03–315

    Article  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193

    Article  CAS  PubMed  Google Scholar 

  • Buhtz A, Springer F, Chappell L, Baulcombe DC, Kehr J (2008) Identification and characterization of small RNAs from the phloem of Brassica napus. Plant J 53:739–749

    Article  CAS  PubMed  Google Scholar 

  • Cebeci O, Budak H (2009) Global expression patterns of three Festuca species exposed to different doses of glyphosate using the affymetrix genechip Wheat genome array. Comp Funct Genom 29:505701

    Google Scholar 

  • Chuck G, Whipple C, Jackson D, Hake S (2010) The maize SBP-box transcription factor encoded by tasselsheath4 regulates bract development and the establishment of meristem boundaries. Development 137:1243–1250

    Article  CAS  PubMed  Google Scholar 

  • Cui H, Levesque MP, Vernoux T, Jung JW, Paquette AJ, Gallagher KL, Wang JY, Blilou I, Scheres B, Benfey PN (2007) An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science 316:421–425

    Article  CAS  PubMed  Google Scholar 

  • Dhondt S, Coppens F, De Winter F, Swarup K, Merks RM, Inzé D, Bennett MJ, Beemster GT (2010) SHORT-ROOT and SCARECROW regulate leaf growth in Arabidopsis by stimulating S-phase progression of the cell cycle. Plant Physiol 154:1183–1195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Di Laurenzio L, Wysocka-Diller J, Malamy JE, Pysh L, Helariutta Y, Freshour G, Hahn MG, Feldmann KA, Benfey PN (1996) The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86:423–433

    Article  PubMed  Google Scholar 

  • Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:W64–W70

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL (2003) Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 13:1768–1774

    Article  CAS  PubMed  Google Scholar 

  • Frazier TP, Xie F, Freistaedter A, Burklew CE, Zhang B (2010) Identification and characterization of microRNAs and their target genes in tobacco (Nicotiana tabacum). Planta 232:1289–1308

    Article  CAS  PubMed  Google Scholar 

  • Gao MJ, Parkin I, Lydiate D, Hannoufa A (2004) An auxin-responsive SCARECROW-like transcriptional activator interacts with histone deacetylase. Plant Mol Biol 55:417–431

    Article  CAS  PubMed  Google Scholar 

  • Griffiths-Jones S (2004) The microRNA registry. Nucleic Acids Res 32:D109–D111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guo HS, Xie Q, Fei JF, Chua NH (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell 17:1376–1386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guzman F, Almerão MP, Korbes AP, Christoff AP, Zanella CM, Bered F, Margis R (2013) Identification of potential miRNAs and their targets in Vriesea carinata (Poales, Bromeliaceae). Plant Sci 210:214–223

    Article  CAS  PubMed  Google Scholar 

  • Hwang H, Mendell J (2006) MicroRNAs in cell proliferation, cell death, and tumorigenesis. Brit J Cancer 94:776–780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MC (2004) microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428:84–88

    Article  CAS  PubMed  Google Scholar 

  • Kant S, Peng M, Rothstein SJ (2011) Genetic regulation by NLA and microRNA827 for maintaining nitrate-dependent phosphate homeostasis in Arabidopsis. PLoS Genet 7:e1002021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim J, Jung JH, Reyes JL, Kim YS, Kim SY, Chung KS, Kim JA, Lee M, Lee Y, Narry Kim V (2005) microRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant J 42:84–94

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kinoshita N, Wang H, Kasahara H, Liu J, MacPherson C, Machida Y, Kamiya Y, Hannah MA, Chua NH (2012) IAA-Ala Resistant3, an evolutionarily conserved target of miR167, mediates Arabidopsis root architecture changes during high osmotic stress. Plant Cell 24:3590–3602

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klein J, Saedler H, Huijser P (1996) A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA. Mol Gen Genet 250:7–16

    CAS  PubMed  Google Scholar 

  • Lang QL, Zhou XC, Zhang XL, Drabek R, Zuo ZX, Ren YL, Li TB, Chen JS, Gao XL (2011) Microarray-based identification of tomato microRNAs and time course analysis of their response to Cucumber mosaic virus infection. J Zhejiang Univ Sci B 12:116–125

    Article  PubMed Central  PubMed  Google Scholar 

  • Li PW, Lu XY, Li CZ, Fang J, Tian Y (2007) Advances in the study of plant microRNAs. Yi chuan 29:283–288

    Article  CAS  PubMed  Google Scholar 

  • Lim PO, Lee IC, Kim J, Kim HJ, Ryu JS, Woo HR, Nam HG (2010) Auxin response factor 2 (ARF2) plays a major role in regulating leaf longevity. J Exp Bot 61:1419–1430

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 − ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297:2053–2056

    Article  CAS  PubMed  Google Scholar 

  • Lv GY, Yan MQ, Chen SH (2013) Review of pharmacological activities of Dendrobium officinale based on traditional functions. China J Chin Materia Medica 38:489–493

    Google Scholar 

  • Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ et al (2008) Criteria for annotation of plant MicroRNAs. Plant Cell 20:3186–3190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) NAC transcription factors in plant abiotic stress responses. BBA-Gene Regual Mech 1819:97–103

    CAS  Google Scholar 

  • Nodine MD, Bartel DP (2010) MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis. Gene Dev 24:2678–2692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53:674–690

    Article  CAS  PubMed  Google Scholar 

  • Pradervand S, Weber J, Lemoine F, Consales F, Paillusson A, Dupasquier M, Thomas J, Richter H, Kaessmann H, Beaudoing E (2010) Concordance among digital gene expression, microarrays, and qPCR when measuring differential expression of microRNAs. Biotechniques 48:219–222

    Article  CAS  PubMed  Google Scholar 

  • Schwarz S, Grande AV, Bujdoso N, Saedler H, Huijser P (2008) The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Mol Biol 67:183–195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sethupathy P, Corda B, Hatzigeorgiou AG (2006) TarBase: A comprehensive database of experimentally supported animal microRNA targets. RNA 12:192–197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Souer E, van Houwelingen A, Kloos D, Mol J, Koes R (1996) The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85:159–170

    Article  CAS  PubMed  Google Scholar 

  • Varkonyi-Gasic E, Hellens RP (2011) Quantitative stem-loop RT-PCR for detection of microRNAs. Methods Mol Biol 744:145–157

    Article  CAS  PubMed  Google Scholar 

  • Vaucheret H, Vazquez F, Crété P, Bartel DP (2004) The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Gene Dev 18:1187–1197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang JF, Zhou H, Chen YQ, Luo QJ, Qu LH (2004a) Identification of 20 microRNAs from Oryza sativa. Nucleic Acids Res 32:1688–1695

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang XJ, Reyes JL, Chua NH, Gaasterland T (2004b) Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol 5:R65

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang D, Pei K, Fu Y, Sun Z, Li S, Liu H, Tang K, Han B, Tao Y (2007a) Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene 394:13–24

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Wang MB, Tu JX, Helliwell CA, Waterhouse PM, Dennis ES, Fu TD, Fan YL (2007b) Cloning and characterization of microRNAs from Brassica napus. FEBS Lett 581:3848–3856

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Dong M, Chen W, Liu X, Feng R, Xu T (2012) Microarray identification of conserved microRNAs in Pinellia pedatisecta. Gene 498:36–40

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Poethig RS (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133:3539–3547

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750–759

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xie K, Shen J, Hou X, Yao J, Li X, Xiao J, Xiong L (2012) Gradual increase of miR156 regulates temporal expression changes of numerous genes during leaf development in rice. Plant Physiol 158:1382–1394

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu T, Wang B, Liu X, Feng R, Dong M, Chen J (2012) Microarray-based identification of conserved microRNAs from Pinellia ternata. Gene 493:267–272

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y (2005) miRU: an automated plant miRNA target prediction server. Nucleic Acids Res 33:W701–W704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang B, Pan X, Anderson TA (2006a) Identification of 188 conserved maize microRNAs and their targets. FEBS Lett 580:3753–3762

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Pan X, Cannon CH, Cobb GP, Anderson TA (2006b) Conservation and divergence of plant microRNA genes. Plant J 46:243–259

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Pan X, Cobb GP, Anderson TA (2006c) Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289:3–16

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Pan X, Stellwag EJ (2008) Identification of soybean microRNAs and their targets. Planta 229:161–182

    Article  CAS  PubMed  Google Scholar 

  • Zhao CZ, Xia H, Frazier TP, Yao YY, Bi YP, Li AQ, Li MJ, Li CS, Zhang BH, Wang XJ (2010) Deep sequencing identifies novel and conserved microRNAs in peanuts (Arachis hypogaea L.). BMC Plant Biol 10:3

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhou ZS, Zeng HQ, Liu ZP, Yang ZM (2012) Genome-wide identification of Medicago truncatula microRNAs and their targets reveals their differential regulation by heavy metal. Plant Cell Environ 35:86–99

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Fund of China (No. 30772712) and Zhejiang Open Foundation of the Most Important Subjects.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Xu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Yang, D., Ding, X. et al. MicroRNA expression profiles in conventional and micropropagated Dendrobium officinale . Genes Genom 37, 315–325 (2015). https://doi.org/10.1007/s13258-014-0257-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-014-0257-y

Keywords

Navigation