Skip to main content

Advertisement

Log in

Transcriptome-wide identification of ARF gene family in medicinal plant Polygonatum kingianum and expression analysis of PkARF members in different tissues

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Polygonatum kingianum holds significant importance in Traditional Chinese Medicine due to its medicinal properties, characterized by its diverse chemical constituents including polysaccharides, terpenoids, flavonoids, phenols, and phenylpropanoids. The Auxin Response Factor (ARF) is a pivotal transcription factor known for its regulatory role in both primary and secondary metabolite synthesis. However, our understanding of the ARF gene family in P. kingianum remains limited.

Methods and results

We employed RNA-Seq to sequence three distinct tissues (leaf, root, and stem) of P. kingianum. The analysis revealed a total of 31,558 differentially expressed genes (DEGs), with 43 species of transcription factors annotated among them. Analyses via gene ontology and the Kyoto Encyclopedia of Genes and Genomes demonstrated that these DEGs were predominantly enriched in metabolic pathways and secondary metabolite biosynthesis. The proposed temporal expression analysis categorized the DEGs into nine clusters, suggesting the same expression trends that may be coordinated in multiple biological processes across the three tissues. Additionally, we conducted screening and expression pattern analysis of the ARF gene family, identifying 12 significantly expressed PkARF genes in P. kingianum roots. This discovery lays the groundwork for investigations into the role of PkARF genes in root growth, development, and secondary metabolism regulation.

Conclusion

The obtained data and insights serve as a focal point for further research studies, centred on genetic manipulation of growth and secondary metabolism in P. kingianum. Furthermore, these findings contribute to the understanding of functional genomics in P. kingianum, offering valuable genetic resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The transcriptomes data of Polygonatum kingianum samples (root, stem, and leaf) in this study been deposited in NCBI under accession number BioProject: PRJNA1001864, BioSample: SAMN36822867–SAMN36822875, SRA: SRR25503077–SRR25503085.

References

  1. Rix M, Rushforth K (2016) Polygonatum kingianum. Curtiss Bot Mag 33:142–150

    Article  Google Scholar 

  2. Li R, Tao A, Yang R, Fan M, Zhang X, Du Z, Shang F, Xia C, Duan B (2020) Structural characterization, hypoglycemic effects and antidiabetic mechanism of a novel polysaccharides from Polygonatum kingianum Coll et Hemsl. Biomed Pharmacother 131:110687

    Article  CAS  PubMed  Google Scholar 

  3. Zhao X, Li J (2015) Chemical constituents of the genus Polygonatum and their role in medicinal treatment. Natl Prod Commun 10(4):683–688. https://doi.org/10.1177/1934578X1501000439

    Article  Google Scholar 

  4. Wujisguleng W, Liu Y, Long C (2012) Ethnobotanical review of food uses of Polygonatum (Convallariaceae) in China. Acta Soc Bot Pol 81:1–13

    Article  Google Scholar 

  5. Qian H, Xu Z, Cong K, Zhu X, Zhang L, Wang J, Wei J, Ji P (2021) Transcriptomic responses to drought stress in Polygonatum kingianum tuber. BMC Plant Biol 21:537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu J, Li T, Chen H, Yu Q, Yan C (2021) Structural characterization and osteogenic activity in vitro of novel polysaccharides from the rhizome of Polygonatum sibiricum. Food Funct 12(14):6626–6636

    Article  CAS  PubMed  Google Scholar 

  7. Liu B, Tang Y, Song Z, Ge J (2021) Polygonatum sibiricum F. Delaroche polysaccharide ameliorates HFD-induced mouse obesity via regulation of lipid metabolism and inflammatory response. Mol Med Rep 24(1):501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dong Z, Chen Y (2013) Transcriptomics: advances and approaches. Sci China Life Sci 56(10):960–967

    Article  CAS  PubMed  Google Scholar 

  9. Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T (2017) Transcriptomics technologies. PLoS Comput Biol 13(5):e1005457

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yang Z, Yang L, Liu C, Qin X, Liu H, Chen J, Ji Y (2019) Transcriptome analyses of Paris polyphylla var. chinensis, Ypsilandra thibetica, and Polygonatum kingianum characterize their steroidal saponin biosynthesis pathway. Fitoterapia 135:52–63

    Article  CAS  PubMed  Google Scholar 

  11. Wang S, Wang B, Hua W, Niu J, Dang K, Qiang Y, Wang ZD (2017) novo assembly and analysis of Polygonatum sibiricum transcriptome and identification of genes involved in polysaccharide biosynthesis. Int J Mol Sci 18(9):1950

    Article  PubMed  PubMed Central  Google Scholar 

  12. Powers S, Strader L (2020) Regulation of auxin transcriptional responses. Dev Dyn 249(4):483–495

    Article  CAS  PubMed  Google Scholar 

  13. Guilfoyle T, Ulmasov T, Hagen G (1998) The ARF family of transcription factors and their role in plant hormone-responsive transcription. Cell Mol Life Sci 54(7):619–627

    Article  CAS  PubMed  Google Scholar 

  14. Chandler J (2016) Auxin response factors. Plant Cell Environ 39(5):1014–1028

    Article  CAS  PubMed  Google Scholar 

  15. Guilfoyle T (2015) The PB1 domain in auxin response factor and Aux/IAA proteins: a versatile protein interaction module in the auxin response. Plant Cell 27:33–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Okushima Y, Overvoorde P, Arima K, Alonso J, Chan A, Chang C, Ecker J, Hughes B, Lui A, Nguyen D et al (2005) Functional genomic analysis of the auxin response factor gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17(2):444–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang D, Pei K, Fu Y, Sun Z, Li S, Liu H, Tang K, Han B, Tao Y (2007) Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene 394:13–24

    Article  CAS  PubMed  Google Scholar 

  18. Galli M, Khakhar A, Lu Z, Chen Z, Sen S, Joshi T, Nemhauser J, Schmitz R, Gallavotti A (2018) The DNA binding landscape of the maize auxin response factor family. Nat Commun 9:4526

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liu N, Dong L, Deng X, Liu D, Liu Y, Li M, Hu Y, Yan Y (2018) Genome-wide identification, molecular evolution, and expression analysis of auxin response factor (ARF) gene family in Brachypodium distachyon L. BMC Plant Biol 18:336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pratt I, Zhang B (2021) Genome-wide identification of ARF transcription factor gene family and their expression analysis in sweet potato. Int J Mol Sci 22(17):9391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Song S, Hao L, Zhao P, Xu Y, Zhong N, Zhang H, Liu N (2019) Genome-wide identification, expression profiling and evolutionary analysis of auxin response factor gene family in potato (Solanum tuberosum Group Phureja). Sci Rep 9:1755

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kalluri U, Difazio S, Brunner A, Tuskan G (2007) Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa. BMC Plant Biol 7:59

    Article  PubMed  PubMed Central  Google Scholar 

  23. Si C, Zeng D, Silva J, Qiu S, Duan J, Bai S, He C (2023) Genome-wide identification of Aux/IAA and ARF gene families reveal their potential roles in flower opening of Dendrobium officinale. BMC Genomics 24:199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang J, Khan R, Zhou L, Wu X, Xu N, Ma X, Zhang Y (2021) Genome-wide identification analysis of the auxin response factors family in Nicotiana tabacum and the function of NtARF10 in leaf size regulation. J Plant Biol 64:281–297

    Article  CAS  Google Scholar 

  25. Kumar R, Tyagi A, Sharma A (2011) Genome-wide analysis of auxin response factor (ARF) gene family from tomato and analysis of their role in flower and fruit development. Mol Genet Genomics 285(3):245–260

    Article  CAS  PubMed  Google Scholar 

  26. Sagar M, Chervin C, Mila I, Hao Y, Roustan JP, Benichou M, Gibon Y, Biais B, Maury P, Latché A et al (2013) SlARF4, an auxin response factor involved in the control of sugar metabolism during tomato fruit development. Plant Physiol 161(3):1362–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang YC, Wang N, Xu HF, Jiang SH, Fang HC, Su MY, Zhang ZY, Zhang TL, Chen XS (2018) Auxin regulates anthocyanin biosynthesis through the Aux/IAA-ARF signaling pathway in apple. Hortic Res 5:59

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang H, Huang Y, Li Y, Cui Y, Xiang X, Zhu Y, Wang Q, Wang X, Ma G, Xiao Q et al (2024) An ARF gene mutation creates flint kernel architecture in dent maize. Nat Commun 15(1):2565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grabherr M, Haas B, Yassour M, Levin J, Thompson D, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17):i884–i890

    Article  PubMed  PubMed Central  Google Scholar 

  31. Robinson M, McCarthy D, Smyth G (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  32. Chen T, Zhang H, Liu Y, Liu Y, Huang L (2021) EVenn: easy to create repeatable and editable Venn diagrams and Venn networks online. J Genet Genomics 48(9):863–866

    Article  PubMed  Google Scholar 

  33. Conesa A, Gotz S, Garcia-Gomez J, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676

    Article  CAS  PubMed  Google Scholar 

  34. Shannon P, Markiel A, Ozier O, Baliga N, Wang J, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jin J, Zhang H, Kong L, Gao G, Luo J (2014) PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res 42:1182–1187

    Article  Google Scholar 

  36. Chen C, Wu Y, Li J, Wang X, Zeng Z, Xu J, Liu Y, Feng J, Chen H, He Y, Xia R (2023) TBtools-II: a “one for all, all for one” bioinformatics platform for biological big-data mining. Mol Plant 16(11):1733–1742

    Article  CAS  PubMed  Google Scholar 

  37. Theocharidis A, Van Dongen S, Enright A, Freeman T (2009) Network visualization and analysis of gene expression data using BioLayout Express (3D). Nat Protoc 4:1535–1550

    Article  CAS  PubMed  Google Scholar 

  38. Livak K, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  39. Zhao P, Zhao C, Li X, Gao Q, Huang L, Xiao P, Gao W (2018) The genus Polygonatum: a review of ethnopharmacology, phytochemistry and pharmacology. J Ethnopharmacol 214:274–291

    Article  CAS  PubMed  Google Scholar 

  40. Yan M, Dong S, Gong Q, Xu Q, Ge Y (2023) Comparative chloroplast genome analysis of four Polygonatum species insights into DNA barcoding, evolution, and phylogeny. Sci Rep 13:16495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Goetz M, Vivian-Smith A, Johnson S, Koltunow A (2006) Auxin response factor8 is a negative regulator of fruit initiation in Arabidopsis. Plant Cell 18(8):1873–1886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bouzroud S, Gasparini K, Hu G, Barbosa M, Rosa B, Fahr M, Bendaou N, Bouzayen M, Zsögön A, Smouni A, Zouine M (2020) Down regulation and loss of auxin response factor 4 function using CRISPR/Cas9 alters plant growth, stomatal function and improves tomato tolerance to salinity and osmotic stress. Genes 11(3):272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Science and Technology Research Program of Chongqing Municipal Education Commission (KJZD-K202202701 and KJZD-K202302701), the Doctor Direct Train Project of Wanzhou District (wzstc-20220125), the Natural Science Project of Chongqing Three Gorges Medical College (XJ2021000301 and 2023gccrc07).

Author information

Authors and Affiliations

Authors

Contributions

CC and NL wrote the main manuscript, CY, WX, and WW prepared figures and tables; all authors have read and approved to the published version of the manuscript.

Corresponding authors

Correspondence to Chun-Yu Chen or Ning Li.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 11 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, WX., Yang, C., Xiong, W. et al. Transcriptome-wide identification of ARF gene family in medicinal plant Polygonatum kingianum and expression analysis of PkARF members in different tissues. Mol Biol Rep 51, 648 (2024). https://doi.org/10.1007/s11033-024-09608-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09608-0

Keywords

Navigation