Skip to main content

Advertisement

Log in

Computation of Lacunarity from Covariance of Spatial Binary Maps

  • Published:
Journal of Agricultural, Biological and Environmental Statistics Aims and scope Submit manuscript

Abstract

We consider a spatial binary coverage map (binary pixel image) which might represent the spatial pattern of the presence and absence of vegetation in a landscape. ‘Lacunarity’ is a generic term for the nature of gaps in the pattern: a popular choice of summary statistic is the ‘gliding-box lacunarity’ (GBL) curve. GBL is potentially useful for quantifying changes in vegetation patterns, but its application is hampered by a lack of interpretability and practical difficulties with missing data. In this paper we find a mathematical relationship between GBL and spatial covariance. This leads to new estimators of GBL that tolerate irregular spatial domains and missing data, thus overcoming major weaknesses of the traditional estimator. The relationship gives an explicit formula for GBL of models with known spatial covariance and enables us to predict the effect of changes in the pattern on GBL. Using variance reduction methods for spatial data, we obtain statistically efficient estimators of GBL. The techniques are demonstrated on simulated binary coverage maps and remotely sensed maps of local-scale disturbance and meso-scale fragmentation in Australian forests. Results show in some cases a fourfold reduction in mean integrated squared error and a twentyfold reduction in sensitivity to missing data.

Supplementary materials accompanying the paper appear online and include a software implementation in the R language.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Ion Andronache, personal communication, August 3 2018.

  2. The latter does not appear to be explicitly noted in the literature and will be discussed fully elsewhere—it seems likely that authors such as Serra (1982, p. 151) and Vere-Jones (1999) were aware of the connection.

References

  • Aghajanzadeh, S., Kashaninejad, M., and Ziaiifar, A. M. (2017), “Cloud stability of sour orange juice as affected by pectin methylesterase during come up time: approached through fractal dimension,” International Journal of Food Properties, 20(S3), S2508–S2519.

    Article  Google Scholar 

  • Allain, C., and Cloitre, M. (1991), “Characterizing the lacunarity of random and deterministic fractal sets,” Physical Review A, 44(6), 3552–3558.

    Article  MathSciNet  Google Scholar 

  • Anderson, J. K., Huang, J. Y., Wreden, C., Sweeney, E. G., Goers, J., Remington, S. J., and Guillemin, K. (2015), “Chemorepulsion from the quorum signal autoinducer-2 promotes helicobacter pylori biofilm dispersal,” mBio, 6(4).

  • Anovitz, L. M., and Cole, D. R. (2015), “Characterization and analysis of porosity and pore structures,” Reviews in Mineralogy and Geochemistry, 80, 61–164.

    Article  Google Scholar 

  • Aznarte, J. I., Iglesias-Parro, S., Ibáñez-Molina, A., and Soriano, M. F. (2014), A new computational measure for detection of extrapyramidal symptoms,, in Proceedings of the Second International Work-Conference on Bioinformatics and Biomedical Engineering, University of Grenada, Grenada, pp. 13–22.

  • Azzaz, N., and Haddad, B. (2017), “Classification of radar echoes using fractal geometry,” Chaos, Solitons & Fractals, 98, 130–144.

    Article  MathSciNet  Google Scholar 

  • Baddeley, A., and Jensen, E. B. V. (2005), Stereology for Statisticians, Vol. 103 of Monographs on Statistics & Applied Probability, USA: Chapman and Hall/CRC.

  • Baddeley, A., Rubak, E., and Turner, R. (2016), Spatial Point Patterns: Methodology and Applications with R, Interdisciplinary Statistics, Boca Raton, FL, USA: Chapman and Hall/CRC.

    MATH  Google Scholar 

  • Baddeley, A., and Turner, R. (2005), “Spatstat: an R package for analyzing spatial point patterns,” Journal of Statistical Software, 12(6), 1–42.

    Article  Google Scholar 

  • Baveye, P., Boast, C. W., Gaspard, S., Tarquis, A. M., and Millan, H. (2008), “Introduction to fractal geometry, fragmentation processes and multifractal measures: theory and operational aspects of their application to natural systems,” in Biophysical Chemistry of Fractal Structures and Processes in Environmental Systems, West Sussex, England: John Wiley & Sons, pp. 11–67.

  • Boer, M. M., Sadler, R. J., Wittkuhn, R. S., McCaw, L., and Grierson, P. F. (2009), “Long-term impacts of prescribed burning on regional extent and incidence of wildfires - evidence from 50 years of active fire management in SW Australian forests,” Forest Ecology and Management, 259(1), 132–142.

    Article  Google Scholar 

  • Borys, P., Krasowska, M., Grzywna, Z. J., Djamgoz, M. B. A., and Mycielska, M. E. (2008), “Lacunarity as a novel measure of cancer cells behavior,” BioSystems, 94, 276–281.

    Article  Google Scholar 

  • Caccetta, P., Collings, S., Devereux, A., Hingee, K. L., McFarlane, D., Traylen, A., Wu, X., and Zhou, Z. (2015), “Monitoring land surface and cover in urban and peri-urban environments using digital aerial photography,” International Journal of Digital Earth, pp. 457–475.

  • Chappard, D., Legrand, E., Haettich, B., Chalès, G., Auvinet, B., Eschard, J., Hamelin, J., Baslé, M., and Audran, M. (2001), “Fractal dimension of trabecular bone: comparison of three histomorphometric computed techniques for measuring the architectural two-dimensional complexity,” Journal of Pathology, 195(4), 515–521.

    Article  Google Scholar 

  • Cheng, Q. (1997), “Multifractal modeling and lacunarity analysis,” Mathematical Geology, 29(7), 919–932.

    Article  Google Scholar 

  • Chiu, S. N., Stoyan, D., Kendall, W. S., and Mecke, J. (2013), Stochastic Geometry and Its Applications, 3 edn, Chichester, United Kingdom: John Wiley & Sons.

    Book  MATH  Google Scholar 

  • Cumbrera, R., Tarquis, A. M., Gascó, G., and Millán, H. (2012), “Fractal scaling of apparent soil moisture estimated from vertical planes of Vertisol pit images,” Journal of Hydrology, 452–453, 205–212.

    Article  Google Scholar 

  • Diaz, S., Casselbrant, I., Piitulainen, E., Magnusson, P., Peterson, B., Pickering, E., Tuthill, T., Ekberg, O., and Akeson, P. (2009), “Progression of emphysema in a 12-month hyperpolarized 3He-MRI study: lacunarity analysis provided a more sensitive measure than standard ADC analysis,” Academic Radiology, 16(6), 700–707.

    Article  Google Scholar 

  • Diggle, P. J. (1981), “Binary mosaics and the spatial pattern of heather,” Biometrics, 37(3), 531–539.

    Article  Google Scholar 

  • Dong, P. (2000), “Test of a new lacunarity estimation method for image texture analysis,” International Journal of Remote Sensing, 21(17), 3369–3373.

    Article  Google Scholar 

  • Dàvila, E., and Parés, D. (2007), “Structure of heat-induced plasma protein gels studied by fractal and lacunarity analysis,” Food Hydrocolloids, 21(2), 147–153.

    Article  Google Scholar 

  • Feagin, R. A., Wu, X. B., and Feagin, T. (2007), “Edge effects in lacunarity analysis,” Ecological Modelling, 201(3–4), 262–268.

    Article  Google Scholar 

  • Gould, D. J., Vadakkan, T. J., Poché, R. A., and Dickinson, M. E. (2011), “Multifractal and lacunarity analysis of microvascular morphology and remodeling,” Microcirculation, 18(2), 136–151.

    Article  Google Scholar 

  • Griffith, J. A. (2004), “The role of landscape pattern analysis in understanding concepts of land cover change,” Journal of Geographical Sciences, 14(1), 3–17.

    Article  Google Scholar 

  • Hall, P. (1985), “Resampling a coverage pattern,” Stochastic Processes and their Applications, 20(2), 231–246.

    Article  MathSciNet  MATH  Google Scholar 

  • Karperien, A., Ahammer, H., and Jelinek, H. F. (2013), “Quantitating the subtleties of microglial morphology with fractal analysis,” Frontiers in Cellular Neuroscience, 7(3).

  • Karperien, A. L. (2005), FracLac’s Advanced User Manual, Technical report, Charles Sturt University. Version 2.0f.

  • Kautz, M., Düll, J., and Ohser, J. (2011), “Spatial dependence of random sets and its application to dispersion of bark beetle infestation in a natural forest,” Image Analysis & Stereology, 30(3), 123–131.

    Article  MATH  Google Scholar 

  • Kirkpatrick, L. A., and Weishampel, J. F. (2005), “Quantifying spatial structure of volumetric neutral models,” Ecological Modelling, 186(3), 312–325.

    Article  Google Scholar 

  • Koch, K., Ohser, J., and Schladitz, K. (2003), “Spectral theory for random closed sets and estimating the covariance via frequency space,” Advances in Applied Probability, 35(3), 603–613.

    Article  MathSciNet  MATH  Google Scholar 

  • Kolmogoroff, A., and Leontowitsch, M. (1933), “Zur Berechnung der mittleren Brownschen Fläche,” Physikalische Zeitschrift der Sowjetunion, 4, 1–13.

    MATH  Google Scholar 

  • Kolmogorov, A., and Leontovitch, M. (1992), “On computing the mean Brownian area,” in Selected works of A.N. Kolmogorov, Volume II: Probability and mathematical statistics, ed. A. Shiryaev, Vol. 26 of Mathematics and its applications (Soviet series), Dordrecht–Boston–London: Kluwer, pp. 128–138.

  • Lin, B., and Yang, Z. R. (1986), “A suggested lacunarity expression for Sierpinski carpets,” Journal of Physics A: Mathematical and General, 19(2), L49–L52.

    Article  MATH  Google Scholar 

  • Liu, C., and Zhang, W. (2010), Multiscale study on the spatial heterogeneity of remotely-sensed evapotranspiration in the typical oasis of Tarim Basin,, in Proceedings of the Sixth International Symposium on Digital Earth: Data Processing and Applications, Vol. 7841, International Society for Optics and Photonics, Beijing.

  • Mandelbrot, B. B. (1983), Fractals and the Geometry of Nature, New York: W. H. Freeman and Company.

    Book  Google Scholar 

  • Mandelbrot, B. B., and Stauffer, D. (1994), “Antipodal correlations and the texture (fractal lacunarity) in critical percolation clusters,” Journal of Physics A: Mathematical and General, 27(9), L237–L242.

    Article  MathSciNet  MATH  Google Scholar 

  • Matheron, G. (1975), Random Sets and Integral Geometry, USA: John Wiley & Sons.

    MATH  Google Scholar 

  • Mattfeldt, T., and Stoyan, D. (2000), “Improved estimation of the pair correlation function of random sets,” Journal of Microscopy, 200(2), 158–173.

    Article  Google Scholar 

  • McIntyre, N. E., and Wiens, J. A. (2000), “A novel use of the lacunarity index to discern landscape function,” Landscape Ecology, 15(4), 313–321.

    Article  Google Scholar 

  • Molchanov, I. S. (1997), Statistics of the Boolean Model for Practitioners and Mathematicians, Chichester: John Wiley & Sons.

    MATH  Google Scholar 

  • — (2005), Theory of Random Sets, Probability and its Applications, USA: Springer.

    MATH  Google Scholar 

  • Myint, S. W., and Lam, N. (2005), “A study of lacunarity-based texture analysis approaches to improve urban image classification,” Computers, Environment and Urban Systems, 29(5), 501–523.

    Article  Google Scholar 

  • Niemelä, J. (1999), “Management in relation to disturbance in the boreal forest,” Forest Ecology and Management, 115(2), 127–134.

    Article  Google Scholar 

  • Nordman, D. J., and Lahiri, S. N. (2004), “On optimal spatial subsample size for variance estimation,” The Annals of Statistics, 32(5), 1981–2027.

    Article  MathSciNet  MATH  Google Scholar 

  • Nott, D. J., and Wilson, R. J. (2000), “Multi-phase image modelling with excursion sets,” Signal Processing, 80(1), 125–139.

    Article  MATH  Google Scholar 

  • Owen, K. K. (2011), Settlement indicators of wellbeing and economic status - lacunarity and vegetation,, in Proceedings of the Pecora 18 Symposium, American Society for Photogrammetry and Remote Sensing, Virginia, USA.

  • — (2012), Geospatial and Remote Sensing-based Indicators of Settlement Type – Differentiating Informal and Formal Settlements in Guatemala City, PhD thesis, George Mason University.

  • Pendleton, D. E., Dathe, A., and Baveye, P. (2005), “Influence of image resolution and evaluation algorithm on estimates of the lacunarity of porous media,” Physical Review E, 72(4).

  • Picka, J. D. (1997), Variance-reducing modifications for estimators of dependence in random sets, Ph.D., The University of Chicago, Illinois, USA.

    Google Scholar 

  • — (2000), “Variance reducing modifications for estimators of standardized moments of random sets,” Advances in Applied Probability, 32(3), 682–700.

    Article  MathSciNet  MATH  Google Scholar 

  • Pintilii, R., Andronache, I., Diaconu, D. C., Dobrea, R. C., Zeleňáková, M., Fensholt, R., Peptenatu, D., Drăghici, C., and Ciobotaru, A. (2017), “Using fractal analysis in modeling the dynamics of forest areas and economic impact assessment: Maramureş County, Romania, as a case study,” Forests, 8(1).

  • Plotnick, R. E., Gardner, R. H., Hargrove, W. W., Prestegaard, K., and Perlmutter, M. (1996), “Lacunarity analysis: a general technique for the analysis of spatial patterns,” Physical Review E, 53(5), 5461–5468.

    Article  Google Scholar 

  • Plotnick, R. E., Gardner, R. H., and O’Neill, R. V. (1993), “Lacunarity indices as measures of landscape texture,” Landscape Ecology, 8(3), 201–211.

    Article  Google Scholar 

  • Quintanilla, J. A. (1999), “Microstructure functions for random media with impenetrable particles,” Physical Review E, 60(5), 5788–5794.

    Article  Google Scholar 

  • — (2008), “Necessary and sufficient conditions for the two-point phase probability function of two-phase random media,” Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 464(2095), 1761–1779.

    Article  MathSciNet  MATH  Google Scholar 

  • Quintanilla, J. A., Chen, J. T., Reidy, R. F., and Allen, A. J. (2007), “Versatility and robustness of Gaussian random fields for modelling random media,” Modelling and Simulation in Materials Science and Engineering, 15(4), S337.

    Article  Google Scholar 

  • R Core Team (2018), “R: A Language and Environment for Statistical Computing”. URL: https://www.R-project.org/ Accessed: 5 January 2019.

  • Rankey, E. C. (2016), “On facies belts and facies mosaics: Holocene isolated platforms, South China Sea,” Sedimentology, 63(7), 2190–2216.

    Article  Google Scholar 

  • Reiss, M. (2016), “frac2D: Fractal and Lacunarity methods for 2D digital images”. URL: sourceforge.net/projects/iqm-plugin-frac2d Accessed: 31 July 2018.

  • Reiss, M. A., Lemmerer, B., Hanslmeier, A., and Ahammer, H. (2016), “Tug-of-war lacunarity - a novel approach for estimating lacunarity,” Chaos, 26(11).

  • Robbins, H. (1947), “Acknowledgement of priority,” Annals of Mathematical Statistics, 18, 297.

    Article  MathSciNet  Google Scholar 

  • Robbins, H. E. (1944), “On the measure of a random set,” The Annals of Mathematical Statistics, 15(1), 70–74.

    Article  MathSciNet  MATH  Google Scholar 

  • Roces-Díaz, J. V., Díaz-Varela, E. R., and Ávarez Álvarez, P. (2014), “Analysis of spatial scales for ecosystem services: Application of the lacunarity concept at landscape level in Galicia (NW Spain),” Ecological Indicators, 36, 495–507.

    Article  Google Scholar 

  • Schneider, R., and Weil, W. (2008), Stochastic and Integral Geometry, Probability and Its Applications, Germany: Springer-Verlag.

  • Serra, J. P. (1982), Image Analysis and Mathematical Morphology, Norwich, Great Britain: Academic Press.

    MATH  Google Scholar 

  • Shah, R. G., Salafia, C. M., Girardi, T., and Merz, G. S. (2016), “Villus packing density and lacunarity: markers of placental efficiency?,” Placenta, 48, 68–71.

    Article  Google Scholar 

  • Shearer, B. L., Crane, C. E., Barrett, S., and Cochrane, A. (2007), “Phytophthora cinnamomi invasion, a major threatening process to conservation of flora diversity in the South-west Botanical Province of Western Australia,” Australian Journal of Botany, 55(3), 225–238.

    Article  Google Scholar 

  • Sherman, M. (1996), “Variance Estimation for Statistics Computed from Spatial Lattice Data,” Journal of the Royal Statistical Society. Series B (Methodological), 58(3), 509–523.

    Article  MathSciNet  MATH  Google Scholar 

  • Stoyan, D., and Stoyan, H. (1994), Fractals, Random Shapes and Point Fields: Methods of Geometrical Statistics, Chichester, United Kingdom: John Wiley & Sons.

    MATH  Google Scholar 

  • Sui, D. Z., and Wu, X. B. (2006), “Changing patterns of residential segregation in a prismatic metropolis: a lacunarity-based study in Houston, 1980–2000,” Environment and Planning B: Planning and Design, 33(4), 559–579.

    Article  Google Scholar 

  • Sun, W., Xu, G., Gong, P., and Liang, S. (2006), “Fractal analysis of remotely sensed images: a review of methods and applications,” International Journal of Remote Sensing, 27(22), 4963–4990.

    Article  Google Scholar 

  • Sung, C. Y., Yi, Y.-j., and Li, M. (2013), “Impervious surface regulation and urban sprawl as its unintended consequence,” Land Use Policy, 32, 317–323.

    Article  Google Scholar 

  • Torquato, S. (2002), Random Heterogeneous Materials: Microstructure and Macroscopic Properties, number 16, New York, USA: Springer Science+Business Media.

    Book  MATH  Google Scholar 

  • U. S. Geological Survey (2016), “SLC-off Products: Background”. URL: https://landsat.usgs.gov/slc-products-background Accessed: 18th of April 2017.

  • Valous, N. A., Mendoza, F., Sun, D., and Allen, P. (2009), “Texture appearance characterization of pre-sliced pork ham images using fractal metrics: Fourier analysis dimension and lacunarity,” Food Research International, 42(3), 353–362.

    Article  Google Scholar 

  • Velazquez-Camilo, O., Bolaños-Reynoso, E., Rodriguez, E., and Alvarez-Ramirez, J. (2010), “Characterization of cane sugar crystallization using image fractal analysis,” Journal of Food Engineering, 100(1), 77–84.

    Article  Google Scholar 

  • Vere-Jones, D. (1999), “On the fractal dimensions of point patterns,” Advances in Applied Probability, 31(3), 643–663.

    Article  MathSciNet  MATH  Google Scholar 

  • Voss, R. F. (1986), “Characterization and measurement of random fractals,” Physica Scripta, (T13), 27–32. Proceedings of the 6th General Conference of the Condensed Matter Division of the European Physical Society.

  • Wallace, J., Behn, G., and Furby, S. (2006), “Vegetation condition assessment and monitoring from sequences of satellite imagery,” Ecological Management & Restoration, 7(s1), S31–S36.

    Article  Google Scholar 

  • Xue, S., Wang, H., Yang, H., Yu, X., Bai, Y., Tendu, A. A., Xu, X., Ma, H., and Zhou, G. (2017), “Effects of high-pressure treatments on water characteristics and juiciness of rabbit meat sausages: role of microstructure and chemical interactions,” Innovative Food Science & Emerging Technologies, 41, 150–159.

    Article  Google Scholar 

Download references

Acknowledgements

Our thanks to Michael Small and his research group for generous permission to use their computing resources.

Funding

This research was supported by the Australian Research Council (Grant No. DP130104470), Australia’s Commonwealth Scientific and Industrial Research Organisation, and an Australian Government Research Training Program Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kassel Hingee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 20316 KB)

Supplementary material 2 (zip 37662 KB)

Appendix

Appendix

Proof of (22)

The volume \(|X \cap (B\oplus \mathbf {y})|\) can be written as an integral of indicator functions

$$\begin{aligned} |X \cap (B\oplus \mathbf {y})|&=\int _{\mathbb {R}^d} \mathbf {1}_{X \cap W}(\mathbf {x}) \mathbf {1}_{B\oplus \mathbf {y}} (\mathbf {x}) \, \mathrm{d}\mathbf {x} = \int _{\mathbb {R}^d} \mathbf {1}_{W}(\mathbf {x}) \mathbf {1}_{X}(\mathbf {x}) \mathbf {1}_{B} (\mathbf {x}-\mathbf {y}) \, \mathrm{d}\mathbf {x}. \end{aligned}$$

so the first moment is (using the Fubini-Tonelli theorem)

$$\begin{aligned} \frac{1}{|W|}\int _{\mathbb {R}^d} |X \cap (B\oplus \mathbf {y})|\, \mathrm{d}\mathbf {y}&= \frac{1}{|W|}\int _{\mathbb {R}^d} \int _{\mathbb {R}^d}\mathbf {1}_{W}(\mathbf {x}) \mathbf {1}_{X}(\mathbf {x}) \mathbf {1}_{B} (\mathbf {x}-\mathbf {y}) \, \mathrm{d}\mathbf {x} \, \mathrm{d}\mathbf {y} \nonumber \\&= \frac{1}{|W|} \int _{\mathbb {R}^d} \mathbf {1}_{W}(\mathbf {x}) \mathbf {1}_{X}(\mathbf {x}) \int _{\mathbb {R}^d}\mathbf {1}_{B} (\mathbf {x}-\mathbf {y})\, \mathrm{d}\mathbf {y} \, \mathrm{d}\mathbf {x} \nonumber \\&= \frac{|X \cap W|}{|W|} |B| = \hat{p} |B|. \end{aligned}$$
(23)

With similar arguments the second moment is

$$\begin{aligned} \frac{1}{|W|}\int _{\mathbb {R}^d}&|X \cap (B\oplus \mathbf {y})|^2 \, \mathrm{d}\mathbf {y} \nonumber \\&= \frac{1}{|W|} \int _{\mathbb {R}^d}\, \int _{\mathbb {R}^d} \mathbf {1}_{W}(\mathbf {x}) \mathbf {1}_{X}(\mathbf {x}) \mathbf {1}_{B} (\mathbf {x}-\mathbf {y}) \, \mathrm{d}\mathbf {x} \int _{\mathbb {R}^d} \mathbf {1}_{W}(\mathbf {z}) \mathbf {1}_{X}(\mathbf {z}) \mathbf {1}_{B} (\mathbf {z}-\mathbf {y}) \, \mathrm{d}\mathbf {z}\, \, \mathrm{d}\mathbf {y} \nonumber \\&= \frac{1}{|W|} \int _{\mathbb {R}^d}\, \int _{\mathbb {R}^d} \mathbf {1}_{W}(\mathbf {x}) \mathbf {1}_{X}(\mathbf {x}) \mathbf {1}_{W}(\mathbf {z}) \mathbf {1}_{X}(\mathbf {z}) \int _{\mathbb {R}^d} \mathbf {1}_{B} (\mathbf {x}-\mathbf {y}) \mathbf {1}_{B} (\mathbf {z}-\mathbf {y}) \, \mathrm{d}\mathbf {y}\, \, \mathrm{d}\mathbf {x}\, \, \mathrm{d}\mathbf {z} \nonumber \\&= \frac{1}{|W|} \int _{\mathbb {R}^d} \int _{\mathbb {R}^d} \mathbf {1}_{W}(\mathbf {x}) \mathbf {1}_{X}(\mathbf {x}) \mathbf {1}_{W}(\mathbf {z}) \mathbf {1}_{X}(\mathbf {z}) \gamma _B(\mathbf {z}-\mathbf {x}) \, \mathrm{d}\mathbf {x}\, \, \mathrm{d}\mathbf {z} \nonumber \\&= \frac{1}{|W|} \int _{\mathbb {R}^d} |((X \cap W) \oplus \mathbf {v}) \cap (X \cap W)| \gamma _B(\mathbf {v}) \, \mathrm{d}\mathbf {v} \nonumber \\&= \frac{1}{|W|} \int _{\mathbb {R}^d} \gamma _{X \cap W}(\mathbf {v}) \gamma _B(\mathbf {v}) \, \mathrm{d}\mathbf {v} = \int _{\mathbb {R}^d} \frac{\gamma _{X \cap W}(\mathbf {v})}{|W|} \gamma _B(\mathbf {v}) \, \mathrm{d}\mathbf {v}. \end{aligned}$$
(24)

Substitution of (23) and (24) into (21) proves statement (22). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hingee, K., Baddeley, A., Caccetta, P. et al. Computation of Lacunarity from Covariance of Spatial Binary Maps. JABES 24, 264–288 (2019). https://doi.org/10.1007/s13253-019-00351-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13253-019-00351-9

Keywords

Navigation